Charged-particle production in different collision systems up to very high p_T measured with ALICE

> Mario Krüger for the ALICE collaboration

Hard Probes Conference 28.03.2023

recent ALICE publication:

- charged-particle production at LHC for most Run 1 & 2 collision systems: arXiv:2211.15326 (submitted to PLB)
- fundamental observables:
 - multiplicity (N_{ch}) distributions
 - multiplicity dependent transverse momentum (p_{T}) spectra

MC event generators:

- alternative approaches:
 - strings and no QGP (PYTHIA)
 - QGP / hydro. flow also in small systems (EPOS)
- challenge to describe all systems in same framework
- need precise measurements for tuning

Mario Krüger | Charged-particle production in different collision systems

modified from A. Kalweit, QM18 ALICE plenary talk

- dedicated heavy-ion experiment with good p_T resolution also for large N_{ch}
- tracking capabilities in central barrel from very low to very high p_{T} (this work: 0.15 GeV/c - 10 GeV/c)

detectors used in this work:

- MB trigger: - V0 system
- charged-particle reconstruction:
 - Inner Tracking System (ITS)
 - Time Projection Chamber (TPC)

Mario Krüger | Charged-particle production in different collision systems

ALICE Detector

Experimental Challenge

- idea: employ 2D-unfolding
- raw observable: lacksquaretrack yield as a function of track multiplicity
- final observable: multiplicity and p_{T} -differential yield of primary charged particles

Mario Krüger | Charged-particle production in different collision systems

- 10⁵ 10⁴
- 10³
- 10²
- 10
- measured track yield

unfolding multiplicity distributions

Experimental Challenge

4

 $n_{\rm evt}$ ($N_{\rm ch}^{\rm meas}$)

2 3

measured

Mario Krüger | Charged-particle production in different collision systems

N_{ch}meas

G D'Agostini, Nucl. Instr. Meth. Phys. Res. A 362 (1995) 487-498

Mario Krüger | Charged-particle production in different collision systems

Multiplicity Distributions in pp

- KNO-scaled distributions for the different energies align within 20%

Mario Krüger | Charged-particle production in different collision systems

 $P(N_{ch}) \rightarrow \langle N_{ch} \rangle \cdot P(N_{ch})$

Koba Z., Nielsen H. B., Olesen P., Nuclear Physics B 40 (1972) 317

Multiplicity Distributions in p–Pb

Mario Krüger | Charged-particle production in different collision systems

unfolding multiplicity dependent *p*[⊤] spectra

Experimental Challenge

detector response

Mario Krüger | Charged-particle production in different collision systems

- 10⁵ 10⁴ 10³ 10²
- measured track yield

Sequential 2D Unfolding

Mario Krüger | Charged-particle production in different collision systems

Sequential 2D Unfolding

Sequential 2D Unfolding

Sequential 2D Unfolding

Mario Krüger | Charged-particle production in different collision systems

Sequential 2D Unfolding

Sequential 2D Unfolding

Sequential 2D Unfolding

Method Validation — Closure Test

unfolding procedure applied to MC sample including transport of particles through detector

• results compared to generator-level expectation \rightarrow deviations mostly well below 1-2%

Mario Krüger | Charged-particle production in different collision systems

Spectral Shape Evolution

- A–A collisions exhibit slower rise in width than in mean at high multiplicities (spectra stay narrow as a result of both jet quenching and radial flow?)

Mario Krüger | Charged-particle production in different collision systems

comprehensive measurement of mean and width of p_{T} spectra for most LHC Run 1&2 collision systems

- AA collisions exhibit slower rise in width than in mean at high multiplicities (spectra stay narrow as a result of both jet quenching and radial flow?)

Spectral Shape Evolution

• comprehensive measurement of mean and width of p_T spectra for all LHC Run 1 & 2 collision systems

Self-Scaling Features

- common trend for each system (independent of collision energy)
- scaling better for mean than for width of spectra

Mario Krüger | Charged-particle production in different collision systems

arXiv:2211.15326

Model Comparisons pp & p-Pb

- p-Pb: EPOS LHC more accurate description of the data

Mario Krüger | Charged-particle production in different collision systems

• pp: both PYTHIA and EPOS LHC describe the trend of $< p_T > vs$. N_{ch} within few %

EPOS LHC: Phys. Rev. C 92, 034906

PYTHIA: Comput. Phys. Commun. 191 (2015) 159–177

- basic observable $\langle p_T \rangle$ vs. N_{ch} in all collision systems challenging for models
- pp best described by PYTHIA8, large systems difficult for all models

EPOS: Phys. Rev. C89(2014) 064903

paper submitted to PLB arXiv:2211.15326

- new analysis technique to measure spectral shape evolution with multiplicity with unprecedented precision
- comprehensive measurement of charged-particle production at LHC energies for most Run 1 & 2 data
- modelling of particle production through system sizes still challenging for all current theoretical approaches
- many HEP measurements rely on these models to correct their raw data (e.g. to extract detector efficiencies)

precise experimental data can help constrain model parameters

Mario Krüger | Charged-particle production in different collision systems

Conclusions

23

N_{ch}