Strangeness production (Λ , ϕ , K_S^0) in and out-of jets in pp and p–Pb collisions with ALICE at the LHC

Ryan Hannigan

The University of Texas at Austin on behalf of the ALICE Collaboration

11th International Conference
on Hard and Electromagnetic Probes
of High-Energy Nuclear Collisions
28th March 2023

- Increase of strange/non-strange hadrons as a function of multiplicity
- K_S^0 , Λ , and $\phi(1020)$ all undergo this enhancement
- Despite |S| = 0, the φ meson behaves like an open strange hadron

How much of this enhancement is coming from "jet"-like production?

Angular ($\Delta \phi$) correlations with strange hadrons

Using $\Delta \phi$ correlations, separate pairwise yields into three kinematic regions:

- 26m long, 16m high, and 16m wide
- Many subdetectors, most relevant for this analysis are:
 - ITS: Tracking, vertex reconstruction
 - TPC: Tracking, particle identification
 - TOF: Particle identification
 - V0: Multiplicity estimation in forwards (V0A) and backwards (V0C) directions
- All selected tracks have $|\eta|<0.8$

Λ , ϕ , and K_s^0 reconstruction

5

$\label{eq:h-K_S^0} h - K_S^0 \text{ and } h - h$ correlations in pp collisions

***** 6

$h - K_S^0 \Delta \phi$ correlations

- No models are able to describe the overall shape of the correlation function
- PYTHIA8 overestimates jet-like peaks
- Disabling color reconnection (CR) moves
 PYTHIA8 closer to data
- EPOS underestimates jet-like peaks

What do the models say about the near and away-side yields?

Hard Probes 2023

Per-trigger jet-like $h - K_S^0$, h - h yields

Collision system: pp, 13 TeV

- The per-trigger near and away-side yields increase with p_T, with all models capturing this trend
- EPOS under-predicts the yields whereas both PYTHIA tunes over-predict the yields for both the $h-\rm K^0_S$ and h-h

What about the $(h - K_S^0)/(h - h)$ yield ratios?

7 8

$(h - K_S^0)/(h - h)$ yield ratios vs. multiplicity

- Models appear to describe the near and away-side ratios
- No observable multiplicity dependence for both the near and away-side ratios

What about p–Pb with different strange hadrons?

Collision system:

pp, 13 TeV

Hard Probes 2023

10

$h - \phi$ and $h - h \Delta \phi$ correlations

 Underlying event has been subtracted from correlation

Collision system:

p–Pb, 5 TeV

• Correlation shape shows little-to-no dependence on multiplicity for both the $h - \phi$ and h - h cases

What about the
$$(h - \phi)/(h - h)$$
 yield ratios?

$(h - \phi)/(h - h)$ yield ratios vs. multiplicity

- The total ratio increases like the ϕ/π ratio shown on <u>Slide 2</u>
- Underlying event ratio is systematically higher for all multiplicity bins
- Jet-like production is lower than both the total and UE, with the away-side > nearside for all multiplicity bins
- Near and away-side ratios clearly increase with multiplicity (unlike K⁰_S in pp)

$h - \Lambda$ and $h - h \Delta \phi$ correlations

0.16 0.14

0.12

0.02

dN_{pair} d∆φ

- S

ALI-PREL-537496

0.08 ALICE Preliminary

 $0.04 = |\Delta \eta| < 1.2$

 $0.06 = p - Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE Preliminary

 $0.4 = p - Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

 $_{0.2} |\Delta \eta| < 1.2$

0-20%

^{0.2} ALICE Preliminary p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

 $0.1 |\Delta \eta| < 1.2$

NEW

Jet-component contribution increases with associated p_T Hard Probes 2023

What about the $\mathbf{h} - \mathbf{\Lambda}$ and h - h yields?

Collision system:

Per-trigger jet-like $h - \Lambda$, h - h yields

Collision system: p–Pb, 5 TeV

What about the

 $(h - \Lambda)/(h - h)$

yield ratios?

- $h \Lambda$ jet-like yields see much larger increase than h h yields in both associated p_T bins (~70% vs. ~10%)
- Overall increase is lower in the higher associated p_T bin for both $h \Lambda$ and h - h (when compared with lower associated p_T bin)

Hard Probes 2023

14

$(h - \Lambda)/(h - h)$ yield ratios vs. multiplicity

 $4 < p_{
m T}^{
m trigg} < 8$ GeV/c $1.5 < p_{\rm T}^{\rm assoc} < 2.5 \, {\rm GeV/c}$ 2. $5 < p_{\rm T}^{\rm assoc} < 4.0 \, {\rm GeV/c}$ <u>√|</u>4 | 4 **ALICE Preliminary ALICE Preliminary** Underlying Event Underlying Event 0.35 $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ p–Pb $\sqrt{s_{\text{NN}}}$ = 5.02 TeV Away-side (Jet) Away-side (Jet) Yield Ratio Yield Ratio $4.0 < p_{T,trig} < 8.0 \, \text{GeV}/c$ $4.0 < p_{T,trig} < 8.0 \, \text{GeV}/c$ 0.3 0.3 Near-side (Jet) Near-side (Jet) $1.5 < p_{T,assoc}^{1,ass} < 2.5 \, \text{GeV}/c$ $2.5 < p_{T,assoc}^{1,uvg} < 4.0 \text{ GeV/}c$ $|\Delta \eta| < 1.2$ Total (Jet + UE) Total (Jet + UE) 0.25 0.25 $|\Delta \eta| < 1.2$ 0.2 0.2 ┍╺╋╸ 0.15 0.15F **0.1**⊢ 0.1 0.05 0.05 0 0 20 30 80 90 10 20 90 10 50 60 70 50 60 70 80 100 30 100 Multiplicity (%) Multiplicity (%) ALI-PREL-537473 ALI-PREL-537476

- Very similar trends as the (h φ)/(h h) measurement (UE on top, jet-like ratios lower than UE & total, jet-like ratios increase)
- Larger enhancement at higher associated p_{T}

Can we quantify the enhancement in each region?

Collision system:

p–Pb, 5 TeV

$(h - \Lambda)/(h - h)$ yield ratios vs. multiplicity

 Slopes in the lower associated p_T
 bin are systematically lower than those in the higher associated p_T
 bin

Collision system:

p–Pb, 5 TeV

 UE slope is much lower when compared to the other regions in the lower associated p_T bin, whereas the higher associated p_T bin it is consistent with the jet-like regions

```
What about the (h - \Lambda)/(h - \phi) ratios?
```


$(h - \Lambda)/(h - \phi)$ yield ratios vs. multiplicity

 Ratios in each region are constant as a function of multiplicity

Collision system:

p–Pb, 5 TeV

- The near-side ratio is systematically higher than the other regions
- Two competing effects? (s vs. ss, baryon vs. meson)
- Need model comparisons to gain a better understanding!

In pp collisions...

- No multiplicity dependence observed for $(h K_S^0)/(h h)$ ratios in both the near- and away-side of the jet
- The investigated models are able to predict the $(h K_S^0)/(h h)$ ratios, despite failing to predict the individual pairwise yields

In p–Pb collisions...

- Underlying event $(h \phi)/(h h)$ and $(h \Lambda)/(h h)$ ratios are higher than all other regions \rightarrow strangeness *production* mostly coming from UE!
- Near and away-side jet $(h \phi)/(h h)$ and $(h \Lambda)/(h h)$ ratios increase with multiplicity \rightarrow strangeness <u>enhancement</u> in the jets!

Looking forward: Model comparisons for the Λ , ϕ correlations in p–Pb!

CERN

BACKUP!!

Hard Probes 2023

Details: Sideband subtraction for $h-\phi$

Details: Sideband subtraction for h-K⁰

Technique: Angular ($\Delta \varphi$) correlations with strange hadrons

