Baryon to Meson Ratios in Au+Au and p+p collisions at $\sqrt{S_{NN}} = 200 \text{ GeV}$

University of Illinois at Chicago

On behalf of the STAR collaboration

Motivation

- Two prominent signatures of QGP:
 - Baryon enhancement
 - Jet modification
- AMPT simulations: baryon/meson is modified for jets in QGP [PLB(2022)137638]
- Is jet fragmentation modified by QGP?
- How does QGP hadronize?
- We measure p/π in jets using jettrack correlations

n

0.5

-0.5

Measurement Technique

Fully reconstructed jets with tracks identified by Time of Flight (ToF) and Time Projection Chamber (TPC) information => Particle Identification in jets

Data Samples

- p+p collisions at $\sqrt{s} = 200$ GeV (2015)
- 0-20% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, (2014)

Jet Reconstruction

- Anti- $k_{\rm T}$
- Various jet radius, R
- Constituent selections
 - $p_{\rm T}^{const}$ > 2.0 GeV/c
 - $p_{\rm T}^{const}$ > 3.0 GeV/c
- Jet p_{T}^{raw} > 10 GeV/c

Particle Identification Technique

Au+Au $\sqrt{s_{NN}} = 200$ GeV, 0-20%

- Bin count protons
- Fit for pions and kaons

High, $p_{\rm T}$ > 3.5 GeV/c

- dE/dx calibration informed by ToF
- Fit for pions, kaons, protons

Jet-Track Correlations

Jet-Track correlations are used after acceptance correction and Underlying Event (UE) removal
1. Mixed events (normalized to 1 at maximum) for pair-acceptance correction

Underlying Event Subtraction

- Jet-Track correlations are used after acceptance correction and Underlying Event (UE) removal
 - 1. Mixed events (normalized to 1 at maximum) for pair-acceptance correction
 - 2. Subtract UE derived from data with rapidity gap

Track-Track Correlations from p+p collisions

- Track-Track correlation with a leading hadron – simplest proxy for jets
- Leading hadron is highest $p_{\rm T}$ particle with $p_{\rm T}$ > 6.0 GeV/c and $|\eta| < 1.0$
- Associated hadrons identified within the radial distance dR = $\sqrt{d\eta^2 + d\phi^2}$ = 0.5 of leading hadron
- p/π around leading hadron < p/π from inclusive p+p

Particle Composition in Jets from p+p

Particle composition for various jets

- R = 0.3, $p_{\rm T}^{const}$ > 2.0 GeV/c

Strong preference for π over p

Particle Composition in Jets from p+p

Particle composition for various jets

- R = 0.3, $p_{\rm T}^{const}$ > 2.0 GeV/c
- $R = 0.5, p_T^{const} > 2.0 \text{ GeV/c}$

Strong preference for π over p

- Large R \rightarrow moderate increase in associated yields

Particle Composition in Jets from p+p

Particle composition for various jets

- R = 0.3, $p_{\rm T}^{const}$ > 2.0 GeV/c
- $R = 0.5, p_T^{const} > 2.0 \text{ GeV/c}$
- R = 0.3, $p_T^{const} > 3.0 \text{ GeV/c}$

STAR

Strong preference for π over p for all jets in p+p

Similar in-jet ratios were observed in p+p collisions at LHC (INSPIRE:1429564)

Gabriel Dale-Gau, Hard Probes 2023

- Large R \rightarrow moderate increase in associated yields
- Lower p_T^{const} threshold → larger associated yields near threshold

Particle Composition in Jets from Au+Au

- Jets with $p_{\rm T}^{const}$ > 3.0 GeV/c
- Au+Au, R = 0.3
- p+p, R = 0.3
- STAR

Strong preference for π over p in hard constituent jets

- Higher p_T^{const} threshold \rightarrow Similar correlation shapes for 2.0 GeV/c < p_T < 2.2 GeV/c in Au+Au and p+p

 $4.5 \text{ GeV/c} < p_{_{-}} < 5.0 \text{ GeV/c}$

Particle Composition in Jets from Au+Au

- Au+Au, R = 0.3
- p+p, R = 0.3
- Au+Au, Track-Track correlation

Strong preference for π over p in hard constituent jets

 Higher p_T^{const} threshold → Similar correlation shapes for 2.0 GeV/c < p_T < 2.2 GeV/c in Au+Au and p+p

Parsing Impact of Background Fluctuation on Jet Reconstruction

Pseudo-embedding: take p+p jets down to low pt → overlay with central Au+Au event → run jet finder → match to original p+p jet → construct jet track correlation with Au+Au event and perform UE subtraction

$p_{\rm T}^{const}$ > 3 GeV/c

- Jet reconstruction bias due to UE results in minimal correlated background contribution
- Correlated background has negligeable effect on harder constituent jets

p_{T}^{const} > 2 GeV/c

- Jet reconstruction bias due to UE results in greater correlated background contribution
- Work to understand this contribution is ongoing

Summary

Jets in p+p

- First in-jet PID measurement from STAR
- Strong preference for π over p production in jets

Jets in Au+Au

- First in-jet PID measurement from STAR
- Hard constituent jets ($p_T^{const} > 3$ GeV/c):
 - similar p/π ratios in Au+Au and p+p
 - Strong preference for π over p production in jets

Backup

R = 0.3, Au+Au Systematic Uncertainty

R = 0.3, p+p Systematic Uncertainty

Two main sources of systematic error were evaluated:

- PID error, determined by independently varying fit input parameters.
- **U.E. subtraction error,** determined by varying the mixed event normalization applied to the raw correlation, which in turn scales the background level that is subtracted from the jet peak.
- Individual errors deviate only slightly from these characteristic levels.

(https://inspirehep.net/literature/1429564)

Data set (200 GeV)	Energy, Particle level	Energy, Jet level
p+p, R = 0.3, p_{T}^{const} > 2 GeV/c	12.94	12.75
p+p, R = 0.5, p_{T}^{const} > 2 GeV/c	13.39	12.76
p+p, R = 0.3, p_{T}^{const} > 3 GeV/c	13.27	12.74
Au+Au, R = 0.3, $p_{\rm T}^{const}$ > 3 GeV/c	13.21	12.86