

Measurements of the Azimuthal Anisotropy of Jets and High- p_T Charged Particles in Pb+Pb Collisions with the ATLAS Detector

Xiaoning Wang for the ATLAS Collaboration

March 28, 2023

- Shown through observables like jets (left) and tracks (right) R_{AA} , hard scattered partons lose energy when traversing through QGP.
- What's the mechanism of this energy loss? What path length dependence does it have? What's the role of fluctuations?

2

3/28/2023

- + v_n is sensitive to the path-length dependence of energy loss to QGP
 - Modeling of high- p_T particle production requires both initial geometry and energy loss mechanism
 - + v_2 can be explained by almond shaped QGP
 - * $v_{n>2}$ can give insights on role of fluctuations

Probes of Hard Sector Energy Loss

- Jet v_n in |y| < 1.2
 - Jet as hard sector probes for short-distance QGP interactions
 - * v_n of jet yield with respect to n-th order event plane
 - Published ATLAS result with Run II data:
 - Phys.Rev.C 105 (2022) 6, 064903
- High- p_T charged particle v_n in $|\eta| < 2.5$
 - High- p_T particles as proxy of jet as a follow up to jet v_n measurements.
 - More statistics with number of particles, more flexible ways of suppressing non-flow.
 - NEW preliminary ATLAS result with Run II data:
 - ATLAS-CONF-2023-007

Jet v_n with Event Plane Method

• Measure Ψ_n^{obs} , and $n\Delta \phi = n|\phi - \Psi_n|$ in bins of p_T and centrality

- n=2, 3, 4 were measured
- Yields are unfolded in p_T and $\Delta\phi$
- Fit sinusoidal curve to extract v_n

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

 V_2

The v_2 values are consistent with zero in the most central collisions, and positive for all other centrality bins for inclusive p_T .

• v_2 shows a decreasing trend with p_T in the mid-central collisions

> *Phys.Rev.C* 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

Xiaoning Wang

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

CMS charged particle:

Phys.Lett.B 776 (2018) 195-216, e-Print: arXiv:1702.00630 ATLAS 2.76 TeV Jet:

Phys.Rev.Lett. 111 (2013) 15, 152301, e-Print: arXiv:1306.6469 ALICE 2.76 TeV Jet:

Phys.Lett.B 753 (2016) 511-525 , e-Print: arXiv:1509.07334

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

High- p_T Track v_n with Scalar Product (SP) Method

- Events are divided into sub-events by pseudo-rapidity range
- v_n of particle yields is measured with respect to a sub-event plane of large η gap (3.2)
 - Suppresses non-flow correlations from resonance decay, particles of same jet, etc.
- Extended previous measurements to higher p_T with 2018 dataset!
 - Sampled full luminosity in high- p_T region with jet triggers
- More about SP Method:
 - *Explanation of method Phys.Rev.C* 87 (2013) 4, 044907, e-Print: arXiv: 1209.2323
 - ATLAS 2015 SP method measurement Eur.Phys.J.C 78 (2018) 12, 997, e-Print: arXiv: 1808.03951 ATLAS-CONF-2023-007

• Non-zero v_2 up to 200 GeV for most centrality bins

ATLAS-CONF-2023-007

Xiaoning Wang

• No evidence of non-zero v_3 and v_4 in range $|\eta| < 2.5$ for all centrality range (see back-up for other centrality) at high p_T .

ATLAS-CONF-2023-007

Xiaoning Wang

 $|\eta| < 2.5$

 10^{2}

- Similar centrality dependence of v_n
 - Strong centrality dependence for $v_2,$ no obvious dependence for v_3 and v_4
 - Different pseudo-rapidity range, different results
- Different mapping of p_T
- 2018 dataset has enabled us to extend greatly in p_T range to 200 GeV
 - More measurements can be done!

ATLAS Jet Results This talk: *Phys.Rev.C* 105 (2022) 6, 064903, e-Print: arXiv: 2111.06606 ATLAS track results this talk: ATLAS-CONF-2023-007 3/28/2023

Looking forward to theoretical calculations for charged particles!

Xiaoning Wang

ATLAS Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV, 2.2 nb⁻¹ anti- $k_t R = 0.2$, |y| < 1.210-20% Jet, this result LBT EP 250 300 *p*₊ [GeV]

Phys.Rev.C 105 (2022) 6, 064903, arXiv: 2111.06606

JHEP 05 (2021) 041, arXiv: 2010.13680

Nucl.Phys.A 982 (2019) 635-638, arXiv:1811.08975 Phys.Rev.C 99 (2019) 5, 054911, arXiv:1809.02525 Phys.Rev.C 91 (2015) 054908, arXiv:1503.03313

Theoretical Paper quoting this result:

Phys.Rev.C 106 (2022) 4, 044904, arXiv: 2201.08408

Talk:

Mehtar-Tani et. al Dr Konrad Tywoniuk, 29 Mar 2023, 15:00

- Extended the p_T range of current measurements of energy loss anisotropies in hard sector using jets and charged particles.
- Non-zero v_3 measured by jet result in high p_T , charged particles with wider pseudo-rapidity range see v_3 consistent with zero. Measurements of v_4 are consistent with zero.
- More measurements feasible with good statistics of 2018 Run II data with ATLAS!
- ATLAS heavy-ions public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u>

Back-up

- Non-zero v_3 for centrality bin 0-40%.
- No evidence of non-zero v_4 for all centrality bins.

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

Details of SP Method

- Flow vectors are computed for each subevent
 - Negative and positive FCal with calorimeter tower energy $(Q^{N|P})$
 - Negative and positive inner detector with tracks $(q_{n,j})$
- Final Formula:

•
$$v_n\{SP\} = Re \frac{\left\langle q_{n,j}^* Q_n^{N|P} \right\rangle}{\sqrt{\langle Q_n^{N*} Q_n^P \rangle}}$$

Comparison to 2015 ATLAS SP Method Track v_4 Result

Other v_2 Centrality

Pb+Pb 1.72 nb⁻¹

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

10-20%

|η| < 2.5

 $p_{_{\mathrm{T}}}^{10^2}$ [GeV]

Other v_3 Centrality

Other v_4 Centrality

Luminosity Comparisons

ATLAS 2015 charged particle: *Eur.Phys.J.C* 78 (2018) 12, 997, e-Print: arXiv: 1808.03951 CMS 2015 charged particle: *Phys.Lett.B* 776 (2018) 195-216, e-Print: arXiv:1702.00630