A New Model for Jet Energy Loss in Heavy Ion Collisions

Alexander Lind

with Iurii Karpenko, Joerg Aichelin, Pol-Bernard Gossiaux, Martin Rohrmoser, and Klaus Werner

Hard Probes 2023 28 March 2023

Alexander Lind

High Q: Vacuum Shower

- Monte Carlo of a vacuum parton shower originally developed by Martin Rohrmoser
- Evolution according to the DGLAP equations from high virtuality $Q_{max} \sim p_T$ to low virtuality $Q_0 = 0.6 \text{ GeV}$

- Time evolution split into time steps, mean life time $\Delta t = \tau = \hbar c E/Q^2$
- Medium interactions for high Q regime resulting in virtuality increase, $\frac{dQ^2}{dt} = \hat{q}(T)$ similar to YaJEM (T. Renk, 2008)

Low Q: Medium-Induced Single Radiation

- Inelastic collision: Single gluon emission from single medium scattering
- Original result from Gunion-Bertsch (1982) Generalised to massive case by Aichelin, Gossiaux, Gousset (2014)

- Initial Gunion-Bertsch seed: i.e. radiation of a **preformed gluon** from a single scattering (Each parton can generate a number of preformed gluons)
- Gunion-Bertsch cross-section from scalar QCD

$$\frac{\mathrm{d}\sigma^{Qq \to Qqg}}{\mathrm{d}x \,\mathrm{d}^2 k_T \,\mathrm{d}^2 l_t} = \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}^2 l_t} P_g(x, k_T, l_T) \theta(\Delta) \qquad \qquad \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}^2 l_t} \sim \frac{8\alpha_s^2}{9(l_T^2 + \mu^2)^2}$$

Low Q: Medium-Induced Single Radiation

Alexander Lind

Low Q: LPM Effect and Coherent Radiation

- Coherence effects (LPM) for multiple scatterings with medium
- At each timestep:
 - Elastic scattering with prob. $\Gamma_{
 m el}\Delta t$

$$\Gamma_{\rm el}^q = \left(1 + \frac{N_f}{N}\right) \frac{(N^2 - 1)T^3}{\pi \hbar c} \frac{4\alpha_s^2}{\mu^2}$$

- Radiation of preformed gluon with prob. $\Gamma_{
 m inel}\Delta t$
- BDMPS spectrum at intermediate energies achieved by suppressing GB seed by $1/N_s$ $N_s \sim \frac{t_f}{\lambda}$ $t_f \sim \sqrt{\omega}$

Like in Zapp, Stachel, Wiedemann, JHEP 07 (2011), 118

The Algorithm

Flow diagram:

Monte Carlo algorithm for the coherent mediuminduced gluon radiation in our model

Various parameters and settings can be changed and tuned to compare distributions

The Monte Carlo

Reproduction of BDMPS Limit

- Initial state: Low Q Mono-energetic quark gun of 100 GeV
- Medium: Brick of constants temperature 400 MeV Path length: L = 4 fm $\alpha_s = 0.3$
- Scattering centres with infinite mass
- Initial $k_{T} = 0$
- Phase accumulation:

 $\Delta \phi = (2P_Q \cdot k/E_Q)\Delta t/(\hbar c)$

• BDMS normalisation:

$$\frac{\mathrm{d}N_g}{\mathrm{d}\omega} \sim \alpha_s \sqrt{\frac{Lm_D^2}{\hbar c}} \frac{1}{\omega^{3/2}}$$

Alexander Lind

Reproduction of BDMPS Limit

The Effect of the Phase Accumulation

- Same details as before, but ...
 - Keep k⁺ conservation in the elastic scatterings
 - Vary the form of the phase accumulation
 - Also see effect of k_T

The Effect of the Phase Accumulation

More Realistic Case

Similar shapes but larger yield by factor 2

- Relax assumptions and consider a more realistic scenario:
 - Scattering centres of zero mass

 $m_q = 0$

- Energy reduction
- Non-zero k_{τ}
- And vary the phase space accumulation

More Realistic Case

Looking Forward: Towards More Realism

Next step:

- Interface with vHLLE to get hydro evolution of the medium
- Running strong coupling in elastic scatterings
- Start with high Q, high E partons
- Sampling of initial parton p_T

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T} \sim p_T^{-6.5}$$

• Run with hadronisation and jet finding

Summary

- We have presented a new model for jet energy loss in heavy ion collisions
- Implementation in a Monte Carlo framework
- Reproduction of the BDMPS radiation energy spectrum
- Shown effects of different model assumptions
- Next step: First results with hydro evolution interface to vHLLE
- Later goal: Implementation within the new EPOS4
 - Initial state, hydro, and hadronisation from EPOS