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Jet Quenching
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Leading jet

Sub-leading
jet

● Interactions between jet partons and the 
QGP medium leads to modification of jet 
properties

● SUBA-Jet:
Monte Carlo for jet energy loss in heavy 
ion collisions
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● Monte Carlo of a vacuum parton shower originally developed by Martin Rohrmoser

● Evolution according to the DGLAP equations from high virtuality Qmax ~ pT to low virtuality 
Q0 = 0.6 GeV

● Time evolution split into time steps, mean life time 

● Medium interactions for high Q regime resulting in virtuality increase,
similar to YaJEM (T. Renk, 2008)
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Time where each 
parton reaches its
lowest virtuality

Initial production
of back-to-back
high-Q2 quarks



  

Low Q: Medium-Induced Single Radiation

● Inelastic collision:
Single gluon emission from 
single medium scattering

● Original result from Gunion-Bertsch (1982)
Generalised to massive case by 
Aichelin, Gossiaux, Gousset (2014)
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Scattering
centre

● Initial Gunion-Bertsch seed: i.e. radiation of a preformed gluon from a single scattering 
(Each parton can generate a number of preformed gluons)

● Gunion-Bertsch cross-section from scalar QCD



  

Low Q: Medium-Induced Single Radiation
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Low Q: LPM Effect and Coherent Radiation
● Coherence effects (LPM) for multiple scatterings 

with medium

● At each timestep:

– Elastic scattering with prob.
 

– Radiation of preformed gluon with prob.

● BDMPS spectrum at intermediate energies
achieved by suppressing GB seed by

Like in Zapp, Stachel, Wiedemann, 
JHEP 07 (2011), 118
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The Algorithm
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Flow diagram:

Monte Carlo algorithm for 
the coherent medium-
induced gluon radiation in 
our model

Various parameters and 
settings can be changed 
and tuned to compare 
distributions



  

Hadronisation

EPOS or PYTHIA

SUBA-Jet

Vacuum Shower
+

In-medium induced
shower

Hydro Simulation

vHLLE
or

EPOS

Initial State
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Jet finding

FastJet

The Monte Carlo
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Reproduction of BDMPS Limit
● Initial state: Low Q

Mono-energetic quark gun of 100 GeV

● Medium:
Brick of constants temperature 400 MeV
Path length: L = 4 fm

● Scattering centres with infinite mass

● Initial kT = 0

● Phase accumulation:

● BDMS normalisation:
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Reproduction of BDMPS Limit
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The Effect of the Phase Accumulation
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● Same details as before, but …

– Keep k+ conservation in the elastic 
scatterings

– Vary the form of the phase 
accumulation

– Also see effect of kT

Effects at low energy Non-zero kT means earlier formation



  

The Effect of the Phase Accumulation
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More Realistic Case
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● Relax assumptions and consider a more 
realistic scenario:

– Scattering centres of zero mass

– Energy reduction

– Non-zero kT

● And vary the phase space accumulation

Similar shapes
but larger yield by factor 2

But no
overall effect
due to
compensation
at low energies



  

More Realistic Case
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Looking Forward: Towards More Realism

● Interface with vHLLE to get hydro 
evolution of the medium

● Running strong coupling in elastic 
scatterings

● Start with high Q, high E partons

● Sampling of initial parton pT

● Run with hadronisation and jet finding
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Next step:



  

Summary

● We have presented a new model for jet energy loss in heavy ion collisions

● Implementation in a Monte Carlo framework

● Reproduction of the BDMPS radiation energy spectrum

● Shown effects of different model assumptions

● Next step: First results with hydro evolution interface to vHLLE

● Later goal: Implementation within the new EPOS4

– Initial state, hydro, and hadronisation from EPOS

15 / 15Alexander Lind Hard Probes 2023


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

