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First, a look at vacuum showers
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Parton Shower Details

No-emission probability:

How to set up a toy Monte Carlo:
● Splittings happen above some hadronization scale

● Can be rewritten as a condition

● Initialization condition:

E.g. Formation time:

Opening angle:

● To avoid large angles: 
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Differences in ordering choices

Different orderings  Different phase-→
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Different orderings  Different phase-→
space for allowed splittings

First Splitting

Transverse momentum distribution 
follows
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Lund Plane Densities

Shower evolution: Transverse momentum decreases, momentum fraction increases.
7 / 
28



  

Lund Plane Trajectories
Mean values of Lund Plane densities
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Lund Plane Trajectories

Differences between phase-space trajectories

Mean values of Lund Plane densities
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Let’s look at jet quenching!
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● A slightly less simplistic model: 
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Eliminate these events

First Splitting

 → Consider two QGP ‘bricks’
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Influence of the first splitting on quenching
● Apply this pseudo-quenching model to all orderings
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● Apply this pseudo-quenching model to all orderings

● Compute the percentage of ‘quenched’ events

Apply quenching condition to the 
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Summary
● We have created a toy Parton Shower Monte Carlo:

● To explore differences between ordering variables
● Aiming at a framework for time-ordered, medium-induced emissions

● Choice of vacuum ordering  Sensitivity to quenching at differential →
timescales

● Model does not account for medium dilution, differential energy loss
● Only implements vacuum emissions [Medium-induced emissions needed]

● Is jet quenching sensitive to the ordering of vacuum-like emissions? 
● Suggested by this simple model. [Work in Progress] Thank you! 14 / 
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Lund Plane Densities – Virtuality ordering
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Lund Plane Densities – Angular ordering

19 / 
28



  

Lund Density Ratio – Mass / Formation Time

All Events
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Lund Density Ratio – Mass / Formation Time

Events with at least 3 quark splittings
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Quenched events in simple model
● Apply this pseudo-quenching model to all orderings

● Compute the percentage of ‘quenched’ events

Apply quenching condition to the 
first splitting

Apply quenching condition to the 
entire quark branch
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