Parton cascades at DLA: the role of the evolution variable

André Cordeiro

In collaboration with:

Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

HP2023, Thursday 30th March

 Vacuum-like emissions given by logarithmic enhancements

- Vacuum-like emissions given by logarithmic enhancements
- Medium-modifications probed by jet quenching

- Vacuum-like emissions given by logarithmic enhancements
- Medium-modifications probed by jet quenching
- Time-ordering picture needed for medium interface

- Vacuum-like emissions given by logarithmic enhancements
- Medium-modifications probed by jet quenching
- Time-ordering picture needed for medium interface

Is jet quenching sensitive to the ordering of vacuumlike emissions?

First, a look at vacuum showers

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\rm prev}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\rm prev}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\rm cut}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\rm form}^{-1} = rac{|\ell|^2}{2p^+ z(1-z)}$$

(Forn

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2[z(1-z)]^2}$$
 (Angle)

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2[z(1-z)]^2}$$
 (Angle)

To generate a splitting:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

1. Sample a scale from $\ \Delta(s_{
m prev},s)$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

1. Sample a scale from $\Delta(s_{
m prev},s)$ 2. Sample a fraction from $\hat{P}(z) \propto 1/z$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow t_{\text{form}}^{-1} = \frac{|\boldsymbol{\ell}|^2}{2p^+ z(1-z)}$$

(Formation time)

$$s \to \tilde{m}^2 = 2p^+ t_{\rm f}^{-1}$$

(Virtuality)

$$s \rightarrow \tilde{\theta}^2 = \frac{|\boldsymbol{\ell}|^2}{(p^+)^2 [z(1-z)]^2}$$
 (Angle)

To generate a splitting:

Parton Shower Details

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

Parton Shower Details

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

- Splittings happen above some hadronization scale $|\boldsymbol{\ell}|^2 > k_{
 m had}^2$
 - Can be rewritten as a condition $z>z_{
 m cut}$
- Initialization condition: $t_{\rm form}^{-1} < p^+$

$$z_{\rm cut} = \frac{k_{\rm had}^2}{2p^+ t_{\rm form}^{-1}}$$

Parton Shower Details

Io-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

How to set up a toy Monte Carlo:

Ν

- Splittings happen above some hadronization scale $|\boldsymbol{\ell}|^2 > k_{
 m had}^2$
 - Can be rewritten as a condition $z>z_{
 m cut}$
- Initialization condition: $t_{\rm form}^{-1} < p^+$
- To avoid large angles: $\ \widetilde{ heta} < 2\sqrt{2}$

E.g. Formation time:

 $z_{\rm cut} = \frac{k_{\rm had}^2}{2m^{+4}-1}$

 $\tilde{\theta}^2 = \frac{|\ell|^2}{(p^+)^2 [z(1-z)]^2}$

Opening angle:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

1. Generate a scale $t_{\rm form}^{-1}$

2. Generate a momentum fraction z

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

$$\ell = (1 - z)k - zq$$
$$p = k + q$$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Differences in ordering choices

Different orderings → Different phasespace for allowed splittings

Differences in ordering choices

Different orderings → Different phasespace for allowed splittings Transverse momentum distribution follows $\frac{\mathrm{d}|{m k}|^2}{|{m k}|^2}$

Lund Plane Densities

Shower evolution: Transverse momentum decreases, momentum fraction increases.

Lund Plane Trajectories

Lund Plane Trajectories

Differences between phase-space trajectories

Formation Time Inversions

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Formation Time Inversions

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Does this discrepancy translate into differences in quenching magnitude?

Let's look at jet quenching!

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

• Option 1: Apply only to first splitting

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}L}}$ (Decoherence)

• A <u>slightly</u> less simplistic model:

(Finite formation time)

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}(L t_{\rm form})}}$
- And if $t_{\text{form}} < L$

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if $d_s > d_{
m coh} = rac{1}{\sqrt{\hat{q}L}}$

• A <u>slightly</u> less simplistic model:

(Finite formation time)

(Decoherence)

- Eliminate event if $d_s > d_{\rm coh} = \frac{1}{\sqrt{\hat{q}(L t_{\rm form})}}$
- And if $t_{\text{form}} < L$

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

L [fm]	Ĺ	6	
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5
$t_{\rm f}^{-1}$	1.093~%	3.066~%	5.861~%
$\tilde{ ilde{m}^2}$	1.095~%	3.087~%	5.875~%
$ ilde{ heta}^2$	3.951~%	9.054~%	15.607~%

Apply quenching condition to the <u>first splitting</u>

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

L [fm]	4		6	L [fm]	4		6
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5	$\hat{q} \; [{\rm GeV}^2/{ m fm}]$	2	5	5
$\overline{t_{\mathrm{f}}^{-1}}$	1.093~%	3.066~%	5.861~%	${t_{\rm f}^{-1}}$	4.578~%	11.519~%	22.030~%
$ ilde{m}^2$	1.095~%	3.087~%	5.875~%	$ ilde{m}^2$	4.939~%	12.371~%	23.512~%
$ ilde{ heta}^2$	3.951~%	9.054~%	15.607~%	$ ilde{ heta}^2$	4.569~%	11.452~%	22.005~%

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

L [fm]	4		6	L [fm]	4		6
$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5	$\hat{q} \; [{\rm GeV}^2/{\rm fm}]$	2	5	5
$\overline{t_{\mathrm{f}}^{-1}}$	1.093~%	3.066~%	5.861~%	$\overline{t_{\mathrm{f}}^{-1}}$	4.578~%	11.519~%	22.030~%
$ ilde{m}^2$	1.095~%	3.087~%	5.875~%	$ ilde{m}^2$	4.939~%	12.371~%	23.512~%
$ ilde{ heta}^2$	3.951~%	9.054~%	15.607~%	$ ilde{ heta}^2$	4.569~%	11.452~%	22.005~%

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>

Quantifies importance of ordering scale

Summary

- We have created a toy Parton Shower Monte Carlo:
 - To explore differences between ordering variables
 - Aiming at a framework for time-ordered, medium-induced emissions
- Choice of vacuum ordering → Sensitivity to quenching at differential timescales
 - Model does not account for medium dilution, differential energy loss
 - Only implements vacuum emissions [Medium-induced emissions needed]
- Is jet quenching sensitive to the ordering of vacuum-like emissions?
 - Suggested by this simple model. **[Work in Progress]**

Thank you!

Acknowledgements

Fundação para a Ciência e a Tecnologia

15

Backup Slides

Lund Plane Densities – Time ordering

Lund Plane Densities – Virtuality ordering

Lund Plane Densities – Angular ordering

Lund Density Ratio – Mass / Formation Time

All Events

Lund Density Ratio – Angle / Formation Time

All Events

Lund Density Ratio – Mass / Formation Time

Events with at least 3 quark splittings

Lund Density Ratio – Angle / Formation Time

Events with at least 3 quark splittings

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

– Eliminate event if
$$d_s > d_{\rm coh} = rac{1}{\sqrt{\hat{q}L}}$$
 (Decoherence)

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

Option 1: Apply only to first splitting

- Consider distance between daughters: ${
 m d}_s=\sqrt{rac{t_{
 m form}}{k^+}}$
- A <u>simplistic</u> model:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Quenched events in simple model

- Apply this pseudo-quenching model to all orderings
 - Compute the percentage of 'quenched' events

$L \; [\mathrm{fm}]$	4		6	L [fm]	4		6
$\hat{q} \; [\text{GeV}^2/\text{fm}]$	2	5	5	$\hat{q} \; [\mathrm{GeV}^2/\mathrm{fm}]$	2	5	5
t_{f}^{-1}	2.624~%	4.811 %	7.478 %	$t_{ m f}^{-1}$	10.972~%	18.033 %	28.097~%
$ ilde{m}^2_{\widetilde{a_2}}$	2.663~%	4.824~%	7.510~%	${ ilde m^2}$	11.777~%	19.260~%	29.853~%
$ heta^2$	8.044~%	12.547~%	18.212~%	$ heta^2$	10.933~%	17.974~%	28.070~%

Apply quenching condition to the <u>first splitting</u>

Apply quenching condition to the <u>entire quark branch</u>