Measurement of the angle between jet axes and energy-energy correlators with ALICE

Rey Cruz-Torres reynier@lbl.gov On behalf of the ALICE Collaboration 03/28/2023

Jet substructure as QCD tools

ALICE, arXiv:2211.08928, accepted by JHEP ALICE, arXiv:2303.13347

R. Cruz-Torres - HP23

Itline

First measurement of jet-axis differences in Pb—Pb and pp collisions

Energy-energy correlators in pp collisions

PRELIMINARY

First measurement of jet-axis differences in Pb—Pb and pp collisions

ALICE, arXiv:2211.08928, accepted by JHEP ALICE, arXiv:2303.13347

Energy-energy correlators in pp collisions

R. Cruz-Torres - HP23

itline

PRELIMINARY

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed (with Soft Drop) jet

– Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed (with Soft Drop) jet

- Winner-Takes-All (WTA) axis:

- recluster jet with CA algorithm
- $-2 \rightarrow 1$ prong combination by taking direction of harder prong and $p_{T, tot} = p_{T, 1} + p_{T, 2}$
- Resulting axis insensitive to soft radiation at leading power

- Standard axis:

coordinates in (y, φ) of jet clustered with anti- k_T algorithm and combined with E-Scheme

- Groomed axis:

standard axis of groomed (with Soft Drop) jet

- Winner-Takes-All (WTA) axis:

- recluster jet with CA algorithm
- $-2 \rightarrow 1$ prong combination by taking direction of harder prong and $p_{T, tot} = p_{T, 1} + p_{T, 2}$
- Resulting axis insensitive to soft radiation at leading power

Substructure observable: $\Delta R_{axis} = \sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$ between two axes

Why study this observable?

- -Infrared and collinear safe observable (calculable)
- -Sensitive to how coherent energy loss in QGP is
- -Sensitive to modified fraction of q/g jets in medium
- Sensitive to interplay between QGP competing effects -e.g. medium-induced gluon radiation vs. multiplescattering-like (intra-jet) $p_{\rm T}$ broadening

Results in pp

ALICE, arXiv:2211.08928

SCET NLL' (PYTHIA 8) NLL' (Herwig 7)

Results in pp

SCET NLL' (PYTHIA 8) NLL' (Herwig 7)

 $p_{\rm T}^{\rm ch jet}$

- -Universal TMD non-perturbative correction from Drell-Yan and Z-boson production
- -pQCD prediction in good agreement with data
- -Agreement throughout entire kinematics probed
- -Agreement surprisingly good in the NP region

Measurement carried out for

 \in [20,100] GeV/*c* (*R* = 0.2, 0.4)

-Measurement carried out for $R = 0.2 \ (p_T^{ch \ jet} \in [40,140] \ GeV/c)$ and $R = 0.4 \ (p_T^{ch \ jet} \in [80,140] \ GeV/c)$ Fully corrected: Event-wide UE constituent subtraction + 2D Bayesian unfolding procedure (in ΔR_{axis} and $p_T^{ch \ jet}$)

Experimental results

Narrower distribution in Pb-Pb

Grooming impact

Grooming

Overall insensitivity to grooming

Modification in Pb-Pb

ALICE, arXiv:2303.13347

Model comparison ALICE, arXiv:2303.13347

Hybrid

Casalderrey-Solana et al., JHEP 10 (2014) 019 Hulcher et al., JHEP 03 (2018) 010 Casalderrey-Solana, et al JHEP 03 (2017) 135

MATTER+LBT JETSCAPE, arXiv:2204.01163

medium q/g p_T broadening

Ringer et al., PLB 808 (2020) 135634

All models (but **one**) qualitatively agree with measurement

Narrowing of the angular substructure. Selection bias?

medium q/g

Qiu et al., PRL 122 (2019) 252301 Ringer et al., PLB 808 (2020) 135634

$\Sigma(x) = f_{\mathbf{q}} \Sigma_{\mathbf{q}}(x) + f_{\mathbf{g}} \Sigma_{\mathbf{g}}(x)$

-Phenomenological model -Modification of q / g fraction

gluon jet

quark jet

Intra jet p_T broadening

R. Cruz-Torres - HP23

medium q/g Qiu et al., PRL 122 (2019) 252301 Ringer et al., PLB 808 (2020) 135634 $\Sigma(x) = f_{\mathbf{q}} \Sigma_{\mathbf{q}}(x) + f_{\mathbf{g}} \Sigma_{\mathbf{g}}(x)$ -Phenomenological model -Modification of q / g fraction $C_{\rm F} = 4/3$ $C_{\rm A}=3$ quark jet gluon jet $q/g + p_T$ broadening $-p_{\rm T}$ -broadening $\langle \theta_1^2 \rangle \propto \langle \hat{q}L \rangle = 5 \text{ GeV}^2$ -BDMPS approach

Opposite trend with respect to data

Medium resolution length

 $L_{\rm res}$: characteristic scale of the medium at which a splitting can be resolved

 $L_{\rm res} = 0$

medium resolves splitting immediately after parton fragments.

Fully-incoherent energy loss

R. Cruz-Torres - HP23

Medium resolution length

 $L_{\rm res}$: characteristic scale of the medium at which a splitting can be resolved

 $L_{\rm res} = 0$

medium resolves splitting immediately after parton fragments.

Fully-incoherent energy loss

R. Cruz-Torres - HP23

 $L_{\rm res} = \infty$

medium does not resolve splitting.

Fully-coherent energy loss

Medium resolution length

 $L_{\rm res}$: characteristic scale of the medium at which a splitting can be resolved

Fully-incoherent energy loss

ΔR_{axis} to probe microscopic structure of QGP

ALICE, arXiv:2303.13347 Casalderrey-Solana et al., JHEP 10 (2014) 019 Hulcher et al., JHEP 03 (2018) 010 Casalderrey-Solana, et al JHEP 03 (2017) 135

Data favors mechanisms of incoherent energy loss in the QGP* *based on the Hybrid model

First measurement of jet-axis differences in Pb—Pb and pp collisions

ALICE, arXiv:2211.08928, JHEP In press ALICE, arXiv:2303.13347

Energy-energy correlators in pp collisions

R. Cruz-Torres - HP23

Itline

PRELIMINARY

Energy-energy correlators

 $R_{\rm L} = \sqrt{\Delta \varphi_{ij}^2 + \Delta \eta_{ij}^2}$

$$\frac{\mathrm{d}\sigma_{\mathrm{EEC}}}{\mathrm{d}R_{\mathrm{L}}} = \sum_{i,j} \int d\sigma(R'_{\mathrm{L}}) \frac{p_{\mathrm{T},i} p_{\mathrm{T},j}}{p_{\mathrm{T},j\mathrm{et}}^2} \,\delta(R'_{\mathrm{L}} - R_{\mathrm{L},ij})$$
Komiske et al., PRL 130 (2023) 051901
Lee et al., arXiv:2205.03414

- Reduced sensitivity to soft radiation
 - related to $p_{\rm T}$ weighting
 - No need for grooming

Why study this observable?

-Separation of perturbative and non-perturbative regimes _When virtuality approaches $\Lambda_{\rm QCD}\sim p_{\rm T}^{\rm jet}R_{\rm L}\rightarrow$ EEC undergoes phase transition

-Calculable in pQCD (stringent theory tests) -path towards calculations in strongly-coupled limit

Why study this observable?

EEC undergoes phase transition

-Calculable in pQCD (stringent theory tests)

ALI-PREL-540213

R. Cruz-Torres - HP23

Experimental results

Measurement carried out in $p_{\rm T}^{\rm ch \, jet} \in [20, 80] \, {\rm GeV}/c \, (R = 0.4)$

Detector effects corrected bin-by-bin

- -Data and MC (PYTHIA 8 & Herwig 7) agree at detector level
- -Correction factor is small
- -Small systematics (< 4%)

- -Data has broader width than Herwig 7

Model comparison

Universal behavior of the transition region

Universal behavior of the transition region

R. Cruz-Torres - HP23

Universal behavior of the transition region

Comparison to pQCD

NLL calculations correspond to full (charged+neutral) jets and are normalized to data in perturbative region

R. Cruz-Torres - HP23

Lee et al., arXiv:2205.03414

From right to left:

Deviation between **data** and **NLL** calculations: onset of non-perturbative effects

Agreement between **data** and **free hadron scaling**: onset of uniformly distributed hadron scaling behavior

Comparison to pQCD Higher $p_{\rm T}^{\rm ch \ jet}$

NLL calculations correspond to full (charged+neutral) jets and are normalized to data in perturbative region

R. Cruz-Torres - HP23

Lee et al., arXiv:2205.03414

Summary

First measurement of angle between jet angles

- Pb—Pb distributions narrower than pp -> consistent with g jets more active than q jets in the QGP.

> ALICE, arXiv:2211.08928 ALICE, arXiv:2303.13347

Summary First measurement of angle between jet angles

- Pb—Pb distributions narrower than pp -> consistent with g jets more active than q jets in the QGP.
- Data rejects BDMPS-based intra-jet p_T broadening model as main energy-loss mechanism in the QGP.

ALICE, arXiv:2211.08928 ALICE, arXiv:2303.13347

Summary

First measurement of angle between jet angles

- Pb—Pb distributions narrower than pp -> consistent with g jets more active than q jets in the QGP.
- Data rejects BDMPS-based intra-jet p_T broadening model as main energy-loss mechanism in the QGP.
- Data sensitive to $L_{\rm res}$ and favors models with mechanisms of incoherent energy loss.

ALICE, arXiv:2211.08928 ALICE, arXiv:2303.13347

Summary Energy-Energy Correlators

- First fully-corrected EEC measurement at LHC.

- First fully-corrected EEC measurement at LHC.
- Clear separation between hadronic, partonic, and transition (hadronization) regions.

- First fully-corrected EEC measurement at LHC.
- Clear separation between hadronic, partonic, and transition (hadronization) regions.
- p—Pb and Pb—Pb coming in the future. Stay tuned!

ALI-PREL-540229

Thanks for your attention

Check out other related ALICE talks!

- Exploring medium properties with hard transverse momentum splittings using groomed jet substructure measurements in Pb-Pb collisions with ALICE (link) **Raymond Ehlers**

- Measurement of the jet mass and angularities in Pb-Pb collisions at 5.02 TeV with ALICE (link) Ezra Lesser

- First measurement of jet angularities with D^0 -meson tagged jets with ALICE (link) Preeti Dhankher

And posters:

- Multiplicity dependence of charged-particle jet properties in pp and p-Pb collisions with ALICE (link) Debjani Banerjee

- Measurement of the transverse momentum (j_{T}) distributions of charged-particle jet fragments in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE (link) Jaehyeok Ryu

R. Cruz-Torres - HP23

Results: WTA - Standard

Results: WTA - SD (0.1,0)

Results: WTA - SD (0.2,0)

Results: $100 < p_T < 140 \text{ GeV/c}$

Results in pp

-pQCD prediction in good agreement with data -Agreement surprisingly good in the NP region R. Cruz-Torres - HP23

ALICE, arXiv:2211.08928, accepted by JHEP

More grooming

-Agreement persists throughout the entire grooming, R, and p_{T} parameter space probed

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup.

Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check:

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \stackrel{?}{>} z_{cut} \left(\frac{\Delta R_{12}}{R}\right)$$
$$\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\varphi_1 - \varphi_2)^2}$$

 \mathbf{z}_{cut} and $\boldsymbol{\beta}$ free parameters

Check is the first split satisfies the SD condition

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup.

Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check:

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \stackrel{?}{>} z_{cut} \left(\frac{\Delta R_{12}}{R}\right)$$
$$\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\varphi_1 - \varphi_2)^2}$$

 \mathbf{z}_{cut} and $\boldsymbol{\beta}$ free parameters

It does not: - Drop softer branch - check if next split in harder branch satisfies SD condition

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup.

Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check:

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \stackrel{?}{>} z_{cut} \left(\frac{\Delta R_{12}}{R}\right)$$
$$\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\varphi_1 - \varphi_2)^2}$$

 \mathbf{z}_{cut} and $\boldsymbol{\beta}$ free parameters

It does not: - Drop softer branch - check if next split in harder branch satisfies SD condition

Grooming: systematically removing soft, wide-angle radiation from a jet to mitigate effects such as ISR, MPI, and pileup.

Soft Drop: JHEP 1405 (2014) 146 (1402.2657) After reclustering with C-A, decluster and check:

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \stackrel{?}{>} z_{cut} \left(\frac{\Delta R_{12}}{R}\right)$$
$$\Delta R_{12} = \sqrt{(y_1 - y_2)^2 + (\varphi_1 - \varphi_2)^2}$$

 \mathbf{z}_{cut} and $\boldsymbol{\beta}$ free parameters

It does:

- What remains defines the groomed jet

ALICE Detector

R. Cruz-Torres - HP23

ALICE high-resolution tracking (ITS+TPC) → high-precision measurement

