Lattice 00000

Computing Jet Transport Coefficients On The Lattice

Amit Kumar, Abhijit Majumder, Ismail Soudi, Johannes H. Weber

[McGill University], [Wayne State University], [Humboldt-Universität zu Berlin & RTG2575]

Rethinking Quantum Field Theory

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, **HARD PROBES 2023** Aschaffenburg, Germany, March 28, 2023

Introduction			Conclusions
•0	0000	00000	0

Jets are complicated

- Originate in earliest stages of HIC
- Distinct stages of evolution as virtuality or respective hard scale is lowered

From Jet Transport Models to Model Independence

■ Jet modification accumulated across (partially) independent processes and different stages ⇒ Gaussian process ⇒ moments of the collision kernel

JET collaboration¹ comparing and averaging many different models
 Model-independent study of strongly-coupled medium ⇒ LATTICE

¹Burke:2013yra

Formalism	Conclusions
0000	

A Hard Quark Scattering on QGP

²Majumder:2012sh

	Formalism		Conclusions
00	0000	00000	0

Generalized Transport Coefficient

- LATTICE cannot handle a scale $q^- \gg 1/a$ (cf. HQET [Caswell:1985ui]) or near light-cone separation as in PDFs (cf. LAMET [Ji:2013dva])
- **•** To compute \hat{q}_j non-perturbatively use one of the following tools

²Majumder:2012sh ³GarciaEchevarria:2011md

Formalism	Conclusions
0000	

Thermal vs Vacuum Discontinuities

Vacuum subtraction isolates thermal momentum broadening

$$\frac{\hat{q}_j}{T^3} \simeq c_0 \alpha_s \frac{T}{T_\delta} \sum_{n=0}^{\infty} \left[\frac{\nu}{q^-} \right]^{2n} \frac{1}{T^4} \left\langle \operatorname{Tr} \left[F^{+j} \Delta^{2n} F_j^+ \right] \right\rangle_{(T-V)}$$

Can be evaluated on the LATTICE and the continuum limit be taken

	Formalism		Conclusions
00	0000	00000	0

Connection to the Equation of State

- \blacksquare For an infinitely hard quark $q^- \to \infty$ the sum terminates at n=0
- The transverse operator sum reduces to the triplet comp. of the EMT (i.e. entropy density of pure gauge plasma at rest in temperature units)

$$\frac{s}{T^3} = \sum_{j=1}^2 \frac{1}{T^4} \left\langle \operatorname{Tr} \left[F^{+j} F^+_j \right] \right\rangle_{(T-V)}$$

Transport coefficient related as $\hat{q} \simeq \frac{2\pi \alpha_{\rm s}(\mu^2)}{N_C} s$ for a pure gauge plasma⁴

Since *s* is a physical observable, \hat{q} inherits scheme dependence of $\alpha_s(\mu^2)$! Estimate approximation error for a hard quark $E \gg T \sim m_D$ in LO HTL⁵

$$\frac{\hat{q}}{T^3} \simeq \frac{N_C^2 - 1}{N_C} \alpha_{\rm s}(m_D^2) \big[\zeta(3) \frac{48}{11} \big] \simeq \big\{ \frac{21}{22} \big\} \frac{2\pi \alpha_{\rm s}(m_D^2)}{N_C} \frac{s_{\rm SB}}{T^3} \Rightarrow \frac{\delta \hat{q}}{\hat{q}} \gtrsim \frac{1}{22} \approx 4.5\%$$

⁴Kumar:2020wvb

⁵Arnold:2008vd

<u> </u>	0

Lattice calculation

- Factorize off hard scale $q^- \gg 1/a$, evaluate *THE REST* on **LATTICE**
- Rephrase intermediate scale $\nu = T = 1/aN_{\tau}$ after vacuum subtraction
- Wick rotation: $x^0 \rightarrow -ix_4$, $A^0 \rightarrow +iA_4$, $F^{0j} \rightarrow +iF_{4j}$

$$\frac{\hat{q}_j}{T^3} \simeq c_0 \frac{T}{T_\delta} \sum_{n=0}^{\infty} \left[\frac{T}{q^-} \right]^{2n} \left[\alpha_{\rm s} \widehat{O}_n \right]^{(R)}, \, \widehat{O}_n = \frac{1}{T^4} \left\langle \operatorname{Tr} \left[F_{3j} \Delta^{2n} F_{3j} - F_{4j} \Delta^{2n} F_{4j} \right] \right\rangle_{(T-V)}$$

- \widehat{O}_n on LATTICE, extrapolate scale-independent form to continuum limit
- Lattice setup: aspect ratio 4 for T > 0 @ $N_{\tau} = 4, 6, 8, 10$
- Wilson action in quenched, LW/HISQ in (2+1) QCD⁶
- Bare results for 10⁻²ⁿ Ô_{0,1,2}, weights mimic suppression for a hard, 100 GeV quark

⁶HotQCD:2014kol

		Lattice	Conclusions
00	0000	0000	0

\hat{q} in pure gauge theory

- *Ô_{n>0}*: additive mixing with *T*-dependent lower-dim. operators, coefficients not known yet ⇒ postpone by restricting to q⁻ → ∞ case

 Ô₀ = T_c⁽³⁾ is proportional to triplet comp. of gluon contrib. to EMT
- **Transverse sum:** $\hat{q} = \hat{q}_1 + \hat{q}_2$
- Renormalize⁷ $\mathcal{Z}_T^{(3)} \widehat{O}_0^{(B)} = \widehat{O}_0^{(R)}$
- Tadpole improvement $(1/u_0^4)$ overestimates $\widehat{O}_0^{(R)}$ by $\approx 10\%$
- Take continuum limit of $\widehat{O}_0^{(R)}$,
- cf. QCD in a moving frame⁷
- Multiply continuum $\widehat{O}_0^{(R)}$ by $\alpha_s^{(R)}(\mu^2)$ in $\overline{\text{MS}}$ scheme

Full QCD: $T_G^{(3),(B)}$ does not renormalize multiplicatively!

$$\begin{pmatrix} T_{G}^{(3),(R)} \\ T_{Q}^{(3),(R)} \end{pmatrix} = \begin{pmatrix} \mathcal{Z}_{GG}^{(3)} & \mathcal{Z}_{GQ}^{(3)} \\ \mathcal{Z}_{QG}^{(3)} & \mathcal{Z}_{QQ}^{(3)} \end{pmatrix} \begin{pmatrix} T_{G}^{(3),(B)} \\ T_{Q}^{(3),(B)} \end{pmatrix}$$

• Mixing matrix for LW/HISQ action and quark contrib. $T_Q^{(3),(B)}$ not known

8/12

⁷Giusti:2015daa,Giusti:2016iqr

		Lattice	Conclusions
00	0000	00000	0

Estimating the effects of Unquenching

- Renormalization/mixing not under control: no continuum limit!
- Estimate gluon contrib. to entropy density in SB limit

$$R_{\rm SB} = \frac{s_{\rm SB}(N_f = 0)}{s_{\rm SB}(N_f = 3)} = \frac{32}{95} \Rightarrow T_G^{(3),(R)}(N_f = 3) \simeq R_{\rm SB} T_{QCD}^{(3),(R)}(N_f = 3)$$

• Full QCD: Tadpole improved $O_0^{(B)}/u_0^4 T^4$ @ $N_{\tau} = 6$, assigned 30% uncertainty band, sufficient to **estimate the effects of Unquenching**

		Lattice	Conclusions
00	0000	00000	0

Transverse momentum broadening

- Consider only q⁻ → ∞ on the lattice (continuum limit in pure gauge)
- For QCD: $N_{\tau} = 6$, tadpole improved, 30% uncertainty band (hashed)
- Multiply with $\overline{\text{MS}} \alpha_{s}(\mu^{2})$ @ NLO for $N_{f} = 0$ or 3, scale $\mu = (2...4)\pi T$

⁹He:2015pra ¹Burke:2013yra

		Lattice	Conclusions
00	0000	00000	0

Longitudinal momentum broadening

- So far little attention to \hat{e}_2 , as power-suppressed for light flavors vs \hat{q}
- Similar issues with $\widehat{O}_{n>0}$: postpone, consider $q^- \to \infty$
- Similar issues with Unquenching: postpone, consider pure gauge
- First term in $\hat{e}_2 = \hat{q}_3$ vanishes!

$$\frac{\frac{\hat{e}_2}{T^3} \simeq \frac{c_0}{2\sqrt{2}} \frac{1}{2} \left[\alpha_{\rm s}^{(R)} \frac{\langle {\rm Tr}[F_{j3}^2 - F_{j4}^2] \rangle_{(T-V)}^{(R)}}{T^4} - \underbrace{\left(\frac{\alpha_{\rm s} \langle {\rm Tr}[F_{j3}^2 + F_{j4}^2] \rangle_{(T-V)}}{T^4} \right)^{(R)}}_{= -\frac{2\pi}{3b_0} T_G^{\mu\mu} = -\frac{2\pi}{3b_0} T_G^{(1)}} \right]$$

• \hat{e}_2 related to the gluonic trace anomaly \hat{b}_2

$$\frac{\hat{e}_2}{T^3} = \frac{1}{4} \frac{\hat{q}}{T^3} + \frac{2\pi^2}{3N_C b_0} \frac{T_G^{(1)}}{T^4}$$

11 / 12

Introduction	Formalism	Lattice	Conclusions
OO	0000	00000	
Summary			

Jet transport coefficients \$\hat{q}\$ and \$\hat{e}_2\$ computed on the LATTICE
 Tree-level hard quark scattering on non-perturbative medium
 OPE in \$T/q^-\$ yields a series of gauge-invariant local operators

• Leading-twist ops $(q^- \rightarrow \infty)$ tied to SU(3) Equation of State:

$$\frac{\hat{q}}{T^3} \simeq \frac{2\pi\alpha_{\rm s}(\mu^2)}{N_C} \left| \frac{T_G^{(3)}}{T^4} \right| \text{ and } \left| \frac{\hat{e}_2}{T^3} = \frac{1}{4} \frac{\hat{q}}{T^3} + \frac{2\pi^2}{3N_C b_0} \frac{T_G^{(1)}}{T^4} \right|$$

weak T dependence, smooth decrease to zero in scaling region

■ Higher-twist operators mixing w. lower-d ops: need more work!

- Unquenching to Full QCD w. further mixing: needs more work!
- Evaluate NLO scattering through OPE on the LATTICE

Experimental sensitivity to \hat{e}_2 larger for heavy-quark jets

Extension of framework to heavy-quark jets straightforward...?

Thank you for your attention!