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Jets are complicated

Originate in earliest stages of HIC

Distinct stages of evolution as virtuality or respective hard scale is lowered

Jet evolution passing through multiple stages

Hardest scales (E, q ≫ T ):
radiative energy loss

Hard scales (E ≫ T, q ∼
√

ET ):
collisional energy loss

Soft scales: (E, q ∼ T ):
absorbed into the medium

Real-time dynamics encoded in collision kernel
d4WQ,F,T (k)

d4k
, depends on

the hard scale Q ∼ E , q,M
the flavor F ∼ R,M
the medium T ∼ T ,mD ,Nf , {µ}
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From Jet Transport Models to Model Independence

Jet modification accumulated across (partially) independent processes and
different stages ⇒ Gaussian process ⇒ moments of the collision kernel

Model-independent measure of momentum broadening

transverse q̂ ≡ ⟨k2
⊥⟩

L
L

∝ CRα2
s T

3 log
(
hard
soft

)
+ . . .

longitudinal ê2 ≡ ⟨k2
3⟩L
L

∝ CRα2
s T

3 log
(
hard
soft

)
+ . . .

Modeling transverse momentum broadening

1 Many models are consistent, but
JUMPS between RHIC and LHC

2 Log-like rise of q̂/T 3 towards Tpc

from above, sudden drop to zero.

3 Strongly-coupled, inviscid
droplet at RHIC & LHC modeled
as weakly-coupled HTL medium?

JET collaboration1comparing and averaging many different models

Model-independent study of strongly-coupled medium ⇒ LATTICE

1Burke:2013yra
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A Hard Quark Scattering on QGP

Tree-level scattering amplitude M

Collision kernel d4W (k)

d4k
= d4

d4k

|M|2
2NC

Transport coefficient

q̂j =
∑
n

e−βEn

ZTI

∫
d4kk2

j

d4W (k)

d4k

≃ c0αs

∫
dy−d2y⊥d2k⊥

(2π)3
e
ik⊥·y⊥−i

k2
⊥

q−
y− 〈

Tr
[
F+j (0)F+

j (y
−, y⊥)

]〉
T

following standard steps (A− = 0 gauge, promote ∂j → Dj , leading virtuality, . . . ) 2

c0 = 16π
√

2

N2
C
−1

CR , CR = CF = 4/3

αs(µ
2) at soft scale (#T )2,m2

D

near light-cone separated gauge field-strength tensors F+j (·) ⇒ gauge covariant

Transverse q̂ = q̂1 + q̂2 and longitudinal ê2 = q̂3 broadening.

2Majumder:2012sh
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Generalized Transport Coefficient

LATTICE cannot handle a scale q− ≫ 1/a (cf. HQET [Caswell:1985ui])
or near light-cone separation as in PDFs (cf. LAMET [Ji:2013dva])

To compute q̂j non-perturbatively use one of the following tools

Make q̂j gauge invariant via appropriate Wilson lines3 or

Define a generalized coeff.2 Q̂j(q
+) with thermal discontinuity q̂j ,

Q̂j(q
+) ≃ c0αs

∫
d4yd4k
(2π)4

eik·y 2q−

(q+k)2+iε

〈
Tr
[
F+j(0)F+

j (y)
]〉

T

Expand den. for space-like (q+ ≃ −q−), promote ∂3 → D3, scale ν ≲ 1/a ≪ q−

Q̂j(q
+ ≃ −q−) ≃ c0αs

q−

∞∑
n=0

[
ν
q−

]n 〈
Tr
[
F+j∆nF+

j

]〉
T
, ∆ ≡ i

√
2D3
ν

Odd powers of ∆ ⇔ parity violation ⇒ only even powers

For medium at rest no spatial-temporal mixed terms á la F 3jF 0
j

2Majumder:2012sh
3GarciaEchevarria:2011md
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Thermal vs Vacuum Discontinuities

Contour integration along C1 ⇒

I =

∮
C1

dq+

2πi

Q̂j (q
+)

(q−+q+)
≃ Q̂j(q

+ ≃ −q−)

Integrate after deformation to C2 ⇒

I =

∮
C2

dq+

2πi

Q̂j (q
+)

(q−+q+)
≃
∫ T2

−T1

dq+

2πi

Disc
[
Q̂j (q

+)
]

(q−+q+)
+

∫ ∞

0

dq+

2πi

Disc
[
Q̂j (q

+)
]

(q−+q+)

thermal Disc
[
Q̂j (q

+)
]∣∣

q+∼T
≃ q̂j , width Tδ ≡ T1 + T2 ≃ 2

√
2T

time-like hard quark undergoing vacuum-like (T -independent) splitting

Vacuum subtraction isolates thermal momentum broadening

q̂j
T 3 ≃ c0αs

T
Tδ

∑∞
n=0

[
ν
q−

]2n
1
T 4

〈
Tr
[
F+j∆2nF+

j

]〉
(T−V )

,

Can be evaluated on the LATTICE and the continuum limit be taken
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Connection to the Equation of State

For an infinitely hard quark q− → ∞ the sum terminates at n = 0

The transverse operator sum reduces to the triplet comp. of the EMT
(i.e. entropy density of pure gauge plasma at rest in temperature units)

s

T 3
=

2∑
j=1

1

T 4

〈
Tr
[
F+jF+

j

]〉
(T−V )

Transport coefficient related as q̂ ≃ 2παs(µ
2)

NC
s for a pure gauge plasma4

Since s is a physical observable, q̂ inherits scheme dependence of αs(µ
2)!

Estimate approximation error for a hard quark E ≫ T ∼ mD in LO HTL5

q̂

T 3
≃ N2

C − 1

NC
αs(m

2
D)
[
ζ(3)

48

11

]
≃
{21
22

}2παs(m
2
D)

NC

sSB
T 3

⇒ δq̂

q̂
≳

1

22
≈ 4.5%

4Kumar:2020wvb
5Arnold:2008vd
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Lattice calculation

Factorize off hard scale q− ≫ 1/a, evaluate THE REST on LATTICE
Rephrase intermediate scale ν = T = 1/aNτ after vacuum subtraction
Wick rotation: x0 → −ix4, A0 → +iA4, F 0j → +iF4j

q̂j
T 3

≃ c0
T
Tδ

∞∑
n=0

[
T
q−

]2n[
αsÔn

](R)

, Ôn =
1

T 4

〈
Tr
[
F3j∆

2nF3j − F4j∆
2nF4j

]〉
(T−V )

Ôn on LATTICE, extrapolate scale-independent form to continuum limit

Lattice setup: aspect ratio 4
for T > 0 @ Nτ = 4, 6, 8, 10

Wilson action in quenched,
LW/HISQ in (2 + 1) QCD6

Clover lattice operator F̂µν ,
projected to su(2) algebra

Bare results for 10−2nÔ0,1,2,
weights mimic suppression
for a hard, 100 GeV quark

6HotQCD:2014kol

7 / 12

https://inspirehep.net/literature/1307761
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q̂ in pure gauge theory

Ôn>0: additive mixing with T -dependent lower-dim. operators,
coefficients not known yet ⇒ postpone by restricting to q− → ∞ case
Ô0 = T

(3)
G is proportional to triplet comp. of gluon contrib. to EMT

Transverse sum: q̂ = q̂1 + q̂2

Renormalize7 Z(3)
T Ô

(B)
0 = Ô

(R)
0

Tadpole improvement (1/u40)

overestimates Ô
(R)
0 by ≈ 10%

Take continuum limit of Ô(R)
0 ,

cf. QCD in a moving frame7

Multiply continuum Ô
(R)
0

by α
(R)
s (µ2) in MS scheme

Full QCD: T (3),(B)
G does not renormalize multiplicatively!(
T

(3),(R)
G

T
(3),(R)
Q

)
=

(
Z(3)

GG Z(3)
GQ

Z(3)
QG Z(3)

QQ

)(
T

(3),(B)
G

T
(3),(B)
Q

)
Mixing matrix for LW/HISQ action and quark contrib. T

(3),(B)
Q not known

7Giusti:2015daa,Giusti:2016iqr
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Estimating the effects of Unquenching

Renormalization/mixing not under control: no continuum limit!

Estimate gluon contrib. to entropy density in SB limit

RSB =
sSB(Nf = 0)

sSB(Nf = 3)
=

32

95
⇒ T

(3),(R)
G (Nf = 3) ≃ RSBT

(3),(R)
QCD (Nf = 3)

Tadpole improved O
(B)
0 /u40T

4,

within 30% of RSBT
(3),(R)
QCD

Similar result as O(g6) EQCD8

Cutoff effects in pure gauge
O

(B)
0 /u40T

4 ≲ 10% @ Nτ ≥ 6

NLO renormalization factors of
Wilson/Wilson action ≲ NC × 10%

Full QCD: Tadpole improved O
(B)
0 /u40T

4 @ Nτ = 6, assigned 30%
uncertainty band, sufficient to estimate the effects of Unquenching

8Laine:2006cp

9 / 12

https://inspirehep.net/literature/711776


Introduction Formalism Lattice Conclusions

Transverse momentum broadening
Consider only q− → ∞ on the lattice
(continuum limit in pure gauge)

For QCD: Nτ = 6, tadpole improved,
30% uncertainty band (hashed)

Multiply with MS αs(µ
2) @ NLO for

Nf = 0 or 3, scale µ = (2 . . . 4)πT

HTL@LO9 for q− = 100 GeV for
Nf = 0 or 3

(
m2

D =
CA+TF Nf

3 g2T 2
)

q̂

T3 =
CF ζ(3)

4π3

[
2CA+3TFNf

]
g4 ln

[
2ET

m2
D

]
HTL@NNLO soft contr., T ≈ 2
GeV for Nf = 2 [Panero:2013pla]

Stochastic vacuum model for
Nf = 0 [Antonov:2007sh]

Jetscape (Pheno) [Soltz:2019aea]

JET collaboration1 (Models)

9He:2015pra
1Burke:2013yra
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https://inspirehep.net/literature/1244141
https://inspirehep.net/literature/763425
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Longitudinal momentum broadening

So far little attention to ê2, as power-suppressed for light flavors vs q̂

Similar issues with Ôn>0:
postpone, consider q− → ∞
Similar issues with Unquenching:
postpone, consider pure gauge

First term in ê2 = q̂3 vanishes!

ê2
T 3 ≃ c0

2
√
2

1
2

[
α(R)
s

⟨Tr[F 2
j3−F 2

j4]⟩
(R)

(T−V )

T 4

−
(αs⟨Tr[F 2

j3+F 2
j4]⟩(T−V )

T 4

)(R)

︸ ︷︷ ︸
=− 2π

3b0
T

µµ
G

=− 2π
3b0

T
(1)
G

]

ê2 related to the gluonic trace anomaly

ê2
T 3 =1

4
q̂
T 3+

2π2

3NCb0

T
(1)
G
T 4

�� ��
PRELIMINARY

�� ��PRELIMINARY
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Summary

Jet transport coefficients q̂ and ê2 computed on the LATTICE

Tree-level hard quark scattering on non-perturbative medium

OPE in T/q− yields a series of gauge-invariant local operators

Leading-twist ops (q− → ∞) tied to SU(3) Equation of State:

q̂
T 3 ≃ 2παs(µ2)

NC

T
(3)
G
T 4 and ê2

T 3 =1
4

q̂
T 3+

2π2

3NCb0

T
(1)
G
T 4

weak T dependence, smooth decrease to zero in scaling region

Higher-twist operators mixing w. lower-d ops: need more work!

Unquenching to Full QCD w. further mixing: needs more work!

Evaluate NLO scattering through OPE on the LATTICE

Experimental sensitivity to ê2 larger for heavy-quark jets

Extension of framework to heavy-quark jets straightforward. . . ?
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Thank you for your attention!
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