Street, Dresden by Kirchner

Exploring the QCD color charge dependence of jet quenching with photon+ jet events in ATLAS

Christopher McGinn

Hard Probes, Aschaffenburg 29 March 2023 University Colorado Boulder

Jet Measurements in QGP PRL 105 (2010) 252303

University of Colorado Boulder

Jet Measurements in QGP

PRL 105 (2010) 252303

PLB 789 (2019) 167

Jet Measurements in QGP

PRL 105 (2010) 252303

PLB 789 (2019) 167

University of Colorado Boulder

Jet Measurements in QGP

PRL 105 (2010) 252303

PLB 789 (2019) 167

Jet1 Jet2

ATLAS Detector and Data

p p \bigcirc pp collected in 2017 260 pb^{-1} int. lumi.

Pb Pb Pb+Pb collected in 2018 1.72 nb⁻¹ int. lumi.

- Jets are reconstructed w/EMCal and HCal
- Photons are reconstructed w/EMCal
- Centrality (nuclear overlap) is determined by FCal

Motivating γ -tagged R_{AA}

Submitted PLB

Motivating γ -tagged $R_{oldsymbol{A}oldsymbol{A}}$

Submitted PLB

Christopher McGinn

PLB 790 (2019) 180

Motivating γ -tagged $R_{f Af A}$

Submitted PLB

Christopher McGinn

Can we make a comparable measurement and observe q/g flavor dependence?

PLB 790 (2019) 180

Measuring γ -tagged Jet Spectra

At least one γ :

1. $p_{\rm T}^{\gamma}$ > 50 GeV **2.** $|\eta| < 1.37$ OR

- 1.52 < |η| < 2.37
- 3. Passes Tight ID
- 4. Isolation < 3.0 GeV

University of Colorado Boulder

Measuring γ -tagged Jet Spectra

At least one γ:

1. $p_T^{\gamma} > 50 \text{ GeV}$ 2. $|\eta| < 1.37 \text{ OR}$ 1.52 < $|\eta| < 2.37$

- 3. Passes Tight ID
- 4. Isolation < 3.0 GeV

R=0.4 jets with:

Submitted PLB

γ -tagged R_{AA}

γ -tagged $R_{\rm AA}$

Comparison with inclusive jets

- Observe centrality ordered suppression (left), 0-10% most suppressed
- 0-10% γ-tagged jet R_{AA} > inclusive jet R_{AA}! (right)
- Quark v. Gluon medium interactions one possible explanation
 - Slope of spectra in pp differ enough to cause a 10% effect
 - Isospin and nPDF effects cause another 10% but opposite in sign

University of Colorado Boulder

Estimating per-Jet Energy Loss

Following PHENIX PRC 93 024911 (2016): Calculate per-jet energy loss from spectral shift needed to produce observed R_{AA} , i.e.

See also Dr. Maya Shimomura's talk for application in PHENIX w/ pions

 Δp_{T} and S_{Loss} calculation

University of Colorado Boulder

Comparisons with Theory $\gamma\text{-tagged jet } R_{AA}$ Inclusive jet R_{AA} Ratio

- All calculations describe inclusive jet R_{AA} well
- + Most calculations tend to undershoot data for γ -tagged jet $R_{\rm AA}$
- Data shows the ratio of the two $R_{\rm AA}$ above 1 everywhere
 - Theory replicates this qualitatively, but quantitatve discrepencies exist

Motivating γ +multijet

Phys. Lett. B 789 (2019) 167

γ -jet balance in pp

Motivating γ +multijet

of γ + single and multijet

pp measurements of $x_{J\gamma}$ are a combination

Phys. Lett. B 789 (2019) 167

γ -jet balance in pp

Motivating γ +multijet

Phys. Lett. B 789 (2019) 167

 γ -jet balance in pp

University of Colorado Boulder

pp measurements of x_{Jγ} are a combination of γ+ single and multijet

In Pb+Pb, this is convoluted w/quenching
Can we disentangle w/data?

γ -jet balance in Pb+Pb

• $\mathbf{x}_{\mathbf{J}\mathbf{J}\gamma}$ - reduced impact of ISR/FSR on γ +jet balance

- $\mathbf{x}_{\mathbf{J}\mathbf{J}\gamma}$ reduced impact of ISR/FSR on γ +jet balance
- ΔR_{JJ} medium resolution of multiple color charges

 $\mathbf{X}_{\mathbf{J}\mathbf{J}\gamma} = (\vec{p_1} + \vec{p_2})_{\mathbf{T}}/p_{\mathbf{T}}^{\gamma}$

$$\Delta R$$
JJ= $\sqrt{\Delta \phi_{1,2}^2 + \Delta \eta_{1,2}^2}$

 $A_{JJ\gamma} = (p_{T,1} - p_{T,2})/p_T^{\gamma}$

• $x_{JJ\gamma}$ - reduced impact of ISR/FSR on γ +jet balance

- ΔR_{JJ} medium resolution of multiple color charges
- Ally sensitive to color-charge differences in g/g

Measuring γ +multijet

At least two

R=0.2 jets with:

At least one γ :

1. 90 < $p_{\rm T}^{\gamma}$ < 180 GeV

2. $|\eta| < 1.37 \text{ OR}$ 1.52 < $|\eta| < 2.37$

- 3. Passes Tight ID
- 4. Isolation < 3.0 GeV

1. $p_{T} > 30 \text{ GeV}$ 2. $|\eta_{\text{Jet}}| < 2.8$ 3. $\Delta \phi_{\gamma, \text{Jet}} > \pi/2$ 4. $\Delta R_{\text{JJ}} > 0.4$ 5. $\Delta \phi_{\text{JJ}} > 7\pi/8$

Construct Raw Distributions Subtract Mixed Event **Modified for** Apply Purity Correction **Unfold For Detector Effects**

Final Results

Measuring γ +multijet

At least one γ :

- **1.** 90 < $p_{\rm T}^{\gamma}$ < 180 GeV
- 2. $|\eta| < 1.37 \text{ OR}$ 1.52 < $|\eta| < 2.37$
- 3. Passes Tight ID
- 4. Isolation < 3.0 GeV

At least two R=0.2 jets with:

- **2.** $|\eta_{\text{Jet}}| < 2.8$ **3.** $\Delta \phi_{\gamma, \text{Jet}} > \pi/2$
- **5.** $\Delta \phi_{\gamma, \text{Jet}} > \pi/2$ **4.** $\Delta R_{\text{JJ}} > 0.4$
- **5.** Δφ_{JJγ}> 7π/8

Multi-jet Mixed Event (I)

Mixed event subtracts off background contributions (red)

- 2 Min. Bias Events are needed per signal (minimum)
- Min. Bias chosen by matching global characteristics in signal:
 - Centrality matching (1% width bins)
 - Ψ_2 , or Event-plane ϕ , (8 bins)

Multi-jet Mixed Event (II) Using our example signal event, raw contributions are:

• b+c

2. Signal with Background

- **a+b**
- **a+c**
- **d+b**
- d+c

3. Pure Background

• a+d

Step-by-step walkthru of mixing jet algo. in backup here

Results $\mathbf{X}_{\mathbf{J}\mathbf{J}\gamma}$

- Monotonic increase in overall suppression as centrality \rightarrow 0%
- + Peak shifts left in Pb+Pb as centrality \rightarrow 0%

Results $A_{JJ\gamma}$

- + As cent. ightarrow 0%, A_{JJ γ} Pb+Pb/pp develops a downward slope
- Suggests a greater suppression of asymmetric pairs

Results ΔR_{JJ}

- See hint of greater suppression at large ΔR_{JJ} in 0-10%
- JEWEL gets the slope of Pb+Pb/pp strikingly wrong

 ΔR JJ=

Conclusion

dd/qd+qd

0.8

0.6

04

0.2

04

ATLAS Preliminary

2017 pp 260 pb

90<p_<180 GeV 30<p____<501 GeV

anti-k, R=0.2 jets

1 4

XLb

 $\sqrt{s} = 5.02 \text{ TeV}$

2018 Pb+Pb 1.72 nb

0_10%

JEWEL

- Observe quark-enhanced γ -tagged jet $R_{\rm AA}$ > inclusive jet $R_{\rm AA}$
- + First analysis of γ -tagged multijet system in Pb+Pb (preliminary)
- + Observe significant suppression of γ + 2 jets + X production

Assuming symmetric observable (think vector sum over $p_{f T}^\gamma$):

- 1. Signal
 - b+c
- 2. Signal with Background
 - <mark>a+b</mark>
 - <mark>a+</mark>c
 - **d+b**
 - **d+c**

3. Pure Background

• a+d

Mixing Algo. (II)

- Handled as in inclusive jet analysis
 - Add γ to MB event matched by global parameters
 - + Correlate γ w/ all pairs of jets in-event
- Or:
 - Contribution of a+d cancelled by a'+d'

- Now embed γ with a single jet
- Correlate all jet pais w/embedded γ +jet
 - 1. b+a' cancels b+a
 - 2. b+d' cancels b+d
 - 3. c+a' cancels c+a
 - 4. c+d' cancels c+d

University of Colorado Boulder

- We don't know which jets are real or fake!
- We must also embed γ + a,d
 - Note I've offset them in the embeds for clarity
- This gives additional combinations
 - a+a'
 - a+d'
 - d+a'
 - **d+d'**

- What happened?
 - We took a photon correlated with an in-event fake jet and correlated with a jet from another event
 - To fix, double embed
- γ + a',d' are associated at first embed
- + Each γ + jet pair from first embed are embedded again
 - a'+a" cancels a+a'
 - a'+d" cancels a+d'
 - d'+a" cancels d+a'
 - d'+d" cancels d+d'

Mixing Algo. (VI)

- a+d removed with γ in single event
- + b+a removed with γ +b in single event
- + b+d removed with $\gamma \text{+b}$ in single event
- d+a removed with γ +d in single event
- d+d removed with γ +d in single event
- Double embed corrects for γ +jet in single event where the paired jet is fake
- Only b+c remains

Multijet Systematics

All figures 0-10%/pp

 $\mathbf{X}_{\mathbf{J}\mathbf{J}\gamma}$

$\mathsf{A}_{\mathsf{JJ}\gamma}$

- Multijet systematics for Pb+Pb 0-10% / pp
- Can reach 100% in the tails of the distributions

nPDF and Isospin Impact

- nPDF effect cancels between inclusive and γ -tagged
- Isospin effect significant

University of Colorado Boulder