

Quantum simulation of jet evolution in a medium

Wenyang Qian (IGFAE) Hard Probes 2023, Aschaffenburg, Germany Mar 29th, 2023

In collaboration with João Barata, Meijian Li, Xiaojian Du, Carlos Salgado

Outline

- 1. Methods and physical set up
- 2. Quantum simulation algorithm
- 3. Results
 - Jet evolution
 - Momentum broadening

Tools to understand jet physics

- Experiments: designing observables, ...
- Analytical calculations: improved approximation, multiple scattering, ...
- Numerical methods: Monte Carlo simulations, light-front Hamiltonian, ...
- Quantum simulation?

From LF Hamiltonian formalism to quantum simulation

Classical light-front Hamiltonian formalism

Scattering in Time-Dependent Basis Light-Front Quantization, PRD 88 (2013) 065014

Ultrarelativistic quark-nucleus scattering, PRD 101 (2020) 7, 076016

Scattering and gluon emission in a color field, PRD 104 (2021) 5, 056014

Quantum simulation

Single-particle digitization strategy for quantum computation of a \$\$\phi4\$ scalar field theory, PRA 103 (2021) 4, 042410

A quantum strategy to compute the jet quenching parameter, Eur.Phys.J.C 81 (2021) 10, 862

Quantum simulation of nuclear inelastic scattering, PRA 104 (2021) 1, 012611

Medium induced jet broadening in a quantum computer, PRD 106 (2022) 7, 074013

Quantum simulation of jet evolution in a medium (work in progress)

Physical set up

Li, Zhao, Maris, Chen, Li, Tuchin, Vary PRD101.076016 (2020) Barata, Du, Li, WQ, Salgado, PRD106,074013 (2022)

High-energy quark moving close to the light cone scattering on a dense nucleus medium

The light-front Hamiltonian in the $|q\rangle$ Fock sector:

$$P^{-}(x^{+}) = P^{-}_{\rm KE} + V_{\mathcal{A}}(x^{+})$$

Physical set up

Li, Lappi, Zhao, PRD104.056014 (2021)

High-energy quark moving close to the light cone scattering on a dense nucleus medium

The light-front Hamiltonian in the |q
angle+|qg
angle Fock sector:

$$P^{-}(x^{+}) = P_{\text{KE}}^{-} + V(x^{+}) = P_{\text{KE}}^{-} + \left\{ V_{qg} + V_{\mathcal{A}}(x^{+}) \right\}$$

The medium and evolution

The stochastic background field uses the McLerran-Venugopalan (MV) model

McLerran, Venugopalan, PRD49, 2233; PRD49, 3352; PRD50, 2225 (1994)

$$\langle\!\langle \rho_a(\vec{x}_\perp, x^+) \rho_b(\vec{y}_\perp, y^+) \rangle\!\rangle = g^2 \tilde{\mu}^2 \delta_{ab} \delta^2(\vec{x}_\perp - \vec{y}_\perp) \delta(x^+ - y^+)$$
$$(m_g^2 - \nabla_\perp^2) \mathcal{A}_a^-(\vec{x}_\perp, x^+) = \rho_a(\vec{x}_\perp, x^+)$$

Light-front time evolution of the probe, decomposed as sequence of unitary operators

$$|\psi_{L_{\eta}}\rangle = U(L_{\eta}; 0) |\psi_{0}\rangle \equiv \mathcal{T}_{+}e^{-i\int_{0}^{L_{\eta}} \mathrm{d}x^{+} P^{-}(x^{+})} |\psi_{0}\rangle \qquad \qquad U(L_{\eta}; 0) = \prod_{k=1}^{N_{t}} U(x_{k}^{+}; x_{k-1}^{+})$$

Quantum simulation algorithm

Wiesner, 9603028 (1996); Zalka, 9603026 (1996)

- 1. Define problem Hamiltonian
- 2. Encode Hamiltonian onto basis
- 3. Prepare initial states
- 4. Evolution
- 5. Measurement protocol

Image from Lamm's talk at Fermilab (2021)

Basis encoding

Barata, Mueller, Tarasov, Venugopalan, PRA103, 4, 042410(2021)

To encode the quantum state, we use single-particle representation. The general quantum state

$$|\psi\rangle = \underbrace{|q\rangle \cdots |q\rangle}_{n} \otimes \underbrace{|g\rangle \cdots |g\rangle}_{m} \longrightarrow |\tilde{\psi}\rangle = \prod_{i=1}^{m} \left(|e_{g_{i}}\rangle \otimes |g_{i}\rangle\right) \otimes \prod_{i=1}^{n} \left(|e_{q_{i}}\rangle \otimes |q_{i}\rangle\right) \qquad \begin{vmatrix} e_{q_{i}}\rangle, |e_{g_{i}}\rangle \\ \text{existence registers} \end{vmatrix}$$

Within |q
angle+|qg
angle Fock sectors, the occupancy registers can be omitted

$$|q_{\text{dressed}}\rangle = |z\rangle \otimes \underbrace{\left(\frac{|g_x\rangle|g_y\rangle|c_g\rangle}{|g\rangle}}_{|g\rangle} \otimes \underbrace{\left(\frac{|q_x\rangle|q_y\rangle|c_q\rangle}{|q\rangle}}_{|q\rangle} \qquad |z\rangle = |0\rangle \Leftrightarrow \text{Fock } |q\rangle, k_g^+ = 0, k_q^+ = K$$
$$|z\rangle = |1\rangle \Leftrightarrow \text{Fock } |qg\rangle, k_g^+ = 1, k_q^+ = K - 1$$
$$\dots$$

take care of unphysical states

Resource cost at
$$N_C = 2$$
 $N_{\text{tot}} = 2^7 \lceil K \rceil N_{\perp}^4 \rightarrow n_Q = (7 + 4 \log N_{\perp} + \log \lceil K \rceil)$

Lattice

• Transverse lattice is periodical, for both position and momentum space via quantum fourier transform (FT)

$$(n_x, n_y) \iff (n_x + i2N_\perp, n_y + j2N_\perp)$$

$$\vec{r}_{\perp} = (n_x, n_y)a_{\perp} \qquad \vec{p}_{\perp} = (k_x, k_y)b_{\perp}$$

• Longitudinal direction is periodical (anti-periodical) for bosons (fermions)

$$p_l^+ = \frac{2\pi}{L}k_l^+, \quad k_q^+ = \frac{1}{2}, \frac{3}{2}, \cdots, \quad k_g^+ = 1, 2, 3, \cdots$$

(-3, 3)	(-2, 3)	(-1, 3)	(0, 3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	
(-3, 2)	(-2, 2)	(-1, 2)	(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	
(-3, 1)	(-2, 1)	(-1, 1)	(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	
(-3, 0)	(-2, 0)	(-1, 0)	(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	1
(-3, -1)	(-2, -1)	(-1, -1)	(0, -1)	(1, -1)	(2, -1)	(3, -1)	(4, -1)	N. S. S.
(-3, 3)	(-2, -2)	(-1, -2)	(0, -2)	(1, -2)	(2, 2)	(3, 2)	(4, 2)	HX4
	(-2, -3)	(-1, -3)	(0, -3)	(1, -3)	(2, 3)	(3, 3)	(4, 3)	

Workflow of quantum evolution

Amplitude level

Simulation parameters

• Our initial state for the jet is a superposition color state with zero transverse momenta: $(p_x, p_y) = (0, 0)$

Longitudinal direction: K = 3.5

- Duration of static medium: $L_{\eta} = 50 \,\mathrm{GeV}^{-1} \approx 10 \,\mathrm{fm}$
- 5 stochastic fields are used for configuration average
- Computational lattice:

Transverse direction: $N_{\perp}=1$

SU(2) color
$$N_C=2$$

• Spin non-flip case

$$Q_s^2 = C_F \frac{(g^2 \tilde{\mu})^2 L_{\eta}}{2\pi}$$
 $C_F = (N_c^2 - 1)/(2N_c)$

- Selected values of saturation scales
- Sufficient time steps in trotterization and layers in background medium

We present our preliminary results of jet evolution in vacuum and in medium, using IBM Qiskit quantum simulators

Results: jet evolution in vacuum

Quantum & classical in agreement:

(1) Vqg oscillation decohered by kinetic terms (2) more qg component at larger coupling

Results: jet evolution in vacuum

Results: jet evolution in medium

(Preliminary)

Medium-induced jet modification on a limited lattice: jet evolution through increasing medium strength, gluon splitting probability decreases

Results: momentum broadening

Fock |q> only

Barata, Du, Li, WQ, Salgado, PRD106,074013 (2022)

Analytical
$$\hat{q} = \frac{g^4}{4\pi} C_F \tilde{\mu}^2 \left\{ \log \left(1 + \frac{\frac{\pi^2}{a_\perp^2}}{m_g^2} \right) - \frac{1}{1 + \frac{a_\perp^2 m_g^2}{\pi^2}} \right\}$$

(eikonal limit linear with Q_s^2)

Simulation $\hat{q} = \langle \boldsymbol{p}_{\perp}^2 \rangle / L_{\eta}$

819200 shots, 11 qubits

Barata, Du, Li, WQ, Salgado,

(work in progress)

Fock |q> + |qg>

Results: momentum broadening

 $\mathsf{P}_{|q\rangle}\langle p_q^2\rangle + \mathsf{P}_{|qg\rangle}\langle p_{qg}^2\rangle$

Simulation with different longitudinal momentum agrees with analytical asymptotics

819200 shots, 9 qubits

Summary and outlook

- We extend previous study on medium-induced momentum broadening by incorporating higher Fock sector.
- Despite of having a small model space, we can study jet evolution using quantum simulators. Our results agree with classical simulations and prev simulation. More numerical analysis is underway.
- Quantum simulation can be effective in reducing the problem complexity faced in classical simulation; we expect to work on simulation with larger lattice and even higher Fock sectors in the next step.

