Search for medium effects using jets from bottom quarks in PbPb collisions

Lida Kalipoliti on behalf of the CMS collaboration

Hard Probes 2023

Lida Kalipoliti | LLR - École Polytechnique

HP2023 | 29 March 2023

Introduction

Lida Kalipoliti | LLR - École Polytechnique

Jets as a probe of the Quark-Gluon Plasma (QGP)

Jet constituent - QGP interaction

 \Rightarrow Jet energy loss (jet quenching)

in vacuum

in the QGP

Flavour, mass, colour dependence ?

Lida Kalipoliti | LLR - École Polytechnique

Bottom quark jets (b-jets)

Production modes of b quarks

Bottom quark jets are characterized by :

- Hard fragmentation
- Suppression of small angle radiation
- Displaced decay vertex

In heavy ion collisions

b quark produced in the early stage of the collision

Probe the whole medium evolution

Study colour, flavour dependence of QCD processes

Lida Kalipoliti | LLR - École Polytechnique

HP2023 | 29 March 2023

4

Previous b-jet measurements

Quenching of b-jets comparable to that of inclusive jets

- Hints of flavour dependence
- Need more in-depth studies

Lida Kalipoliti | LLR - École Polytechnique

HP2023 | 29 March 2023

5

Analysis techniques

Lida Kalipoliti | LLR - École Polytechnique

Jet shapes

Transverse jet profile : distribution of charged particle p_{τ} around the jet axis

$$P(\Delta r) = \frac{1}{\Delta r_{a} - \Delta r_{b}} \frac{1}{N_{jet}} \sum_{jets} \sum_{\substack{\text{trk w}/\\ \Delta r \in (\Delta r_{a}, \Delta r_{b})}} p_{T}^{\text{trk}}$$

Normalized to unity in $\Delta r < 1$

$$\rho(\Delta r) = \frac{P(\Delta r)}{\sum_{\substack{j \in ts \\ \Delta r < 1}} \sum_{\substack{trk w / \\ \Delta r < 1}} p_{T}^{trk}}$$

Sensitive to the shower evolution in the QGP

Lida Kalipoliti | LLR - École Polytechnique

Jet shapes of inclusive jets in pp and PbPb

Measurements restricted in $\Delta r < R^{jet}$:

- Narrowing of jet core in PbPb
- Redistribution to large angles in central PbPb

Lida Kalipoliti | LLR - École Polytechnique

Jet shapes of b-jets in pp

The b-jet shape is sensitive to :

- Very different b-quark fragmentation and hadronization
- The b-hadron decay kinematics

Comparison to Monte Carlo generated events :

- Data described reasonably well by hadronization models
- HERWIG++ better at describing large angle production

CMS

Lida Kalipoliti | LLR - École Polytechnique

Extend measurement to large angles using event mixing

HP2023 | 29 March 2023

9

Event selection and simulation

- L = 1.69 nb⁻¹ of PbPb events at $\sqrt{s_{NN}}$ = 5.02 TeV (CMS 2018) selected with :
 - 0.4 anti- k_{T} jets with online p_{T}^{jet} > 80 or 100 GeV after underlying event subtraction
 - minimum bias, used to correct for jet and track acceptance

Simulated events with :

- PYTHIA8 for the hard processes
- HYDJET for the underlying event contribution
- GEANT4 for the detector response

Used for energy and efficiency corrections

CMS-PHO-EVENTS-2018-010

b-jet selection

The Combined Secondary Vertex (CSV) family of b-taggers rely on :

- Reconstructed secondary vertices
- Large impact parameter tracks
- Soft leptons (e, μ)

 $\underline{\text{CSVv2}}$ is a multivariate tagger used in early Run 2 analyses

Retrained for PbPb

Further light jet decontamination applied using the inclusive jet shape templates (JHEP 05 (2021) 054)

Lida Kalipoliti | LLR - École Polytechnique

New results

Search for medium effects using jets from bottom quarks in PbPb collisions at √s_{NN} = 5.02 TeV

accepted by PLB

<u>arXiv:2210.08547</u>

Lida Kalipoliti | LLR - École Polytechnique

Systematic uncertainties

Leading sources :

- Light jet decontamination of b-jet selection
- Tracking reconstruction efficiency

arXiv:2210.08547

	b jets			Inclusive jets		
Sources		Centralities	5	Centralities		
	30-90%	10-30%	0-10%	30-90%	10-30%	0-10%
Trigger efficiency	3.0	3.0	3.0	3.0	3.0	3.0
Tracking efficiency	5.8	5.8	5.8	5.8	5.8	5.8
Tagging bias corrections	5.0	5.0	5.0	—		—
Decontamination procedure	8.0	8.0	8.0		_	
Jet energy scale/resolution	4.2	4.2	4.2	4.2	4.2	4.2
Pair-acceptance corrections	1.0-2.0	1.0-4.0	1.0 - 5.0	1.0-2.0	1.0-3.0	1.0 - 4.0
Background subtraction	1.0	2.0	3.0	1.0	2.0	3.0
Total	12.3–12.4	12.3–12.9	12.3 –13.2	7.8-8.0	7.8-8.3	7.8-8.7

Lida Kalipoliti | LLR - École Polytechnique

13 HP2023 | 29 March 2023

Results

Overall observed modification :

- PbPb/pp
- ► b / inclusive

CMS

FINAL

NEW RESULT

Lida Kalipoliti | LLR - École Polytechnique

CMS

Lida Kalipoliti | LLR - École Polytechnique

Lida Kalipoliti | LLR - École Polytechnique

Conclusion

Lida Kalipoliti | LLR - École Polytechnique

Summary

Jet shapes of b-jets with respect to inclusive jets

- Suppression at small angles
- Broader energy distribution

Modifications in the medium

- Similar for inclusive and b-jets
- Redistribution to larger angles
- Centrality-dependent

Thank you all for your attention!

Lida Kalipoliti | LLR - École Polytechnique

Backup

Lida Kalipoliti | LLR - École Polytechnique

The CMS experiment

CMS

Lida Kalipoliti | LLR - École Polytechnique

Object reconstruction

Charged particles :

- Hit information in $|\eta^{trk}| < 2.4$
- Keep tracks with $p_{T}^{trk} > 1 \text{ GeV}$
- ▶ 60 90 % tracking efficiency

Jets :

- Reconstructed from PF candidates with R = 0.4 anti- k_{T} algorithm
- Energy correction from simulation
- Underlying event subtraction in PbPb
- Redefinition of jet axis by the winner-takes-all scheme (leading constituents)

Event mixing

Motivation

Correct for the jet - track pair acceptance

Result

ME : Reference correlation containing only detector and acceptance effects

S : Corrected yield

```
Technique
 2D jet - track \Delta \eta - \Delta \phi matrix normalized by N<sub>iets</sub>
                  \Rightarrow Per-jet averaged distribution
                            RS(\Delta\eta, \Delta\phi) = \frac{1}{N_{\text{ints}}} \frac{\mathrm{d}^2 N^{\text{same}}}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\phi}
 Associate tracks from one event to jets from a
                                      different event
                        ME(\Delta\eta,\Delta\phi) = \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N^{\rm mix}}{{\rm d}\Delta\eta {\rm d}\Delta\phi}
                           Correct the per-jet yield max acceptance
S(\Delta\eta, \Delta\phi) = \frac{1}{N_{\text{intre}}} \frac{\mathrm{d}^2 N}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\phi} = \frac{ME(0,0)}{ME(\Delta\eta, \Delta\phi)} RS(\Delta\eta, \Delta\phi)
```


Lida Kalipoliti | LLR - École Polytechnique

Light jet decontamination technique

Motivation

Improve b-tagged jet purity in data

Lida Kalipoliti | LLR - École Polytechnique

Evaluation methods of systematic uncertainties

Trigger efficiency :

• Repeated the analysis with $p_{T}^{jet} > 60$ GeV trigger

Tracking efficiency :

- Data-to-simulation differences estimated from a <u>D meson decay study</u>
- Additional comparison of b-jet to inclusive tracks

Tagging bias corrections :

- Variation of gluon splitting fraction
- Negative tagging method for purity

Related results

Lida Kalipoliti | LLR - École Polytechnique

CMS

JHEP 12 (2022) 126

arXiv:2204.13530

HP2023 | 29 March 2023 26