Exploring medium properties with hard transverse momentum splittings using groomed jet substructure measurements in Pb–Pb collisions with ALICE

Raymond Ehlers¹ for the ALICE Collaboration 28 March 2023

¹Lawrence Berkeley National Lab/UC Berkeley raymond.ehlers@cern.ch

BERKELEY LAB Ber

Jets and their substructure

- Jets are in situ probes of QGP dynamics
- Jet-medium interactions modify the internal jet structure
- Jet substructure observables sensitive to which medium properties?

Jets and their substructure

- · Jets are in situ probes of QGP dynamics
- Jet-medium interactions modify the internal jet structure
- Jet substructure observables sensitive to which medium properties?

H. Andrews et al., J.Phys.G 47 (2020) 6, 065102

Medium properties from jet substructure

Resolving medium scales

- What are the **relevant length scales**?
- Eq. When do partons interact coherently?

Eg. Medium scattering centers

- Is there emergent structure, such as quasi-particles?
- Search via (sub)iet deflection

let deflection: Yonazhen Hou Tuesday 12:10

Raymond Ehlers (LBNL/UCB) - 28 March 2023

at.T-PREL-514092

This presentation

- Search for high $k_{\rm T}$ emissions as signature of point-like (Moliere) scattering
- Search via groomed jet substructure

Optimal way to find the relevant splittings?

Identifying hard splittings: Soft Drop

· Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\mathrm{T},1}, p_{\mathrm{T},2})}{p_{\mathrm{T},1} + p_{\mathrm{T},2}} > \mathsf{z}_{\mathrm{cut}}(\frac{\Delta R}{R})^{\beta}$$

Identifying hard splittings: Soft Drop

· Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} (\frac{\Delta R}{R})^{l}$$

Identifying hard splittings: Soft Drop

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} (\frac{\Delta R}{R})^{\beta}$$

- *z*_{cut} = **0.2**, **0.4**
- $\beta = 0$
- *z*_{cut} = 0.4 trades phase space to focus on angular dependence

· Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PhysRevD.101.034004

- $\kappa^a \propto \max_{i \in \mathsf{C}/\mathsf{A}} [z_i(1-z_i) p_{\mathsf{T}i}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - a = 1: " k_T " largest $k_T \sim \kappa^1 p_T$

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PhysRevD.101.034004

- $\kappa^a \propto \max_{i \in C/A} [z_i(1-z_i)p_{Ti}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - a = 1: " k_T " largest $k_T \sim \kappa^1 p_T$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_T$

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PhysRevD.101.034004

- $\kappa^a \propto \max_{\substack{i \in C/A}} [z_i(1-z_i)p_{Ti}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - $\boldsymbol{a} = \mathbf{1}$: " $\boldsymbol{k}_{\mathsf{T}}$ " largest $k_{\mathsf{T}} \sim \kappa^1 p_{\mathsf{T}}$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_T$
 - In practice, need **min** *k***_T in Pb**-**Pb**

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PhysRevD.101.034004

- $\kappa^a \propto \max_{i \in C/A} [z_i(1-z_i)p_{Ti}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - $\boldsymbol{a} = \mathbf{1}$: " $\boldsymbol{k}_{\mathsf{T}}$ " largest $k_{\mathsf{T}} \sim \kappa^1 p_{\mathsf{T}}$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_T$
 - In practice, need **min** *k***_T in Pb–Pb**
 - Alternatively, add *z* requirement (0.2)

- Consider $p_{T,iet}^{ch} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_T = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_T = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_T = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_T = 0.24 \text{ GeV}/c$

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \, {\rm GeV}/c$
- 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \,{\rm GeV}/c$
- 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \, {\rm GeV}/c$
- 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24 \, {\rm GeV}/c$
- ightarrow Which method selects which splitting?

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \, {\rm GeV}/c$
- 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \,{\rm GeV}/c$
- 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \, {\rm GeV}/c$
- 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24~{\rm GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_T = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_T = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_T = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_T = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**
 - DyG a = 1.0, z > 0.2: #3

- Consider $p_{T,\text{iet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**
 - DyG *a* = 1.0, *z* > 0.2: **#3**
 - SD z_{cut} = 0.4: **#3**

Comparing grooming methods in pp

- Shape variations at low $k_{\rm T}$
- Grooming methods converge at high k_{T,g}
- z requirement dominates over grooming method
- PYTHIA in broad agreement with data

See also: $R_g + z_g$ with DyG: arXiv:2204.10246

Unfolding Dynamical Grooming in Pb-Pb

- Dynamical Grooming exhibits reduced subleading subjet purity in Pb-Pb
- Off-diagonal mismatched splittings are major component at low k_T
- → Problematic for unfolding
 - Caused by requirement to always select a splitting
 - Address by minimum measured k_T requirement
 - Trade **improved purity** for **reduced dynamic range** and kinematic efficiency
 - Minimum z has similar impact

Mulligan, Ploskon, PhysRevC.102.044913

Unfolding Dynamical Grooming in Pb-Pb

- Dynamical Grooming exhibits reduced subleading subjet purity in Pb-Pb
- **Off-diagonal mismatched splittings** are major component at low *k*_T
- Problematic for unfolding
 - Caused by requirement to always select a splitting
 - Address by minimum measured k_T requirement
 - Trade **improved purity** for **reduced dynamic range** and kinematic efficiency
 - Minimum z has similar impact

Dynamical Grooming in Pb-Pb

- First measurements of Dynamical Grooming in Pb–Pb
- Grooming methods converge at high k_{T,g}
- Smaller bkg extends
 *k*_{T,g} range in semi-central

Comparing grooming methods in Pb-Pb

- Similar trends in 0-10% and 30-50%
- Reduced SD $z_{cut} = 0.4$ yield due to **phase space**
- Consistent set of splittings from all DyG a = 1.0, SD $z_{cut} = 0.2$
- → Suggests few hard splits further into tree

Searching for modification

ALICE Preliminary

 $R = 0.2, |\eta_{\rm iet}| < 0.7$

5

- No enhancement at high k_{T.g}
- Standard DyG shows little modification

Searching for modification

- Standard DyG shows little modification
- Modification in methods with z > 0.2
 - Larger modification in 0-10%
- Consistent with narrowing picture seen in many substructure analyses.
 - eg. *R*_g (Phys.Rev.Lett. 128 (2022) 10, 102001), jet axis difference, angularities, etc

SD 0.2

No clear evidence of Moliere scattering

Searching for modification

How do models fare?

SD 0.2

JETSCAPEv3.5 AA22 tune

JETSCAPE arXiv:2301.02485

- MATTER+LBT
- Describes data well

Hybrid model

D'Eramo et al. JHEP 01 (2019) 172 Hulcher et al. QM 22

- With, w/out Moliere
- w/out Moliere describe
 0-10% data better

Summary

- **Comprehensive study** searching for Moliere scattering via jet substructure
- 1. First measurement of DyG in Pb-Pb
 - Minimum k_{T} or *z* requirement to avoid background dominated component
- 2. **z**_{cut} **dominates** over grooming method details
 - Suggests minimal impact of splittings far into splitting tree
- 3. Modification of $k_{T,g}$, similar to narrowing seen in other substructure observables
- 4. No clear evidence of Moliere scattering

Backup

Jets and their substructure in ALICE

- ALICE well suited for measuring:
- Low *p*_T jets
- **Small splitting angles** at high efficiency
- ightarrow Enables strong substructure program
 - Anti- $k_{\rm T}$ charged-particle jets measured in pp and Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

Dynamical Grooming: Lund Planes

Mehtar-Tani et al., PhysRevD.101.034004

Comparing grooming methods in pp: mixed methods, *R* = 0.4

Dynamical Grooming: analytical calculations pp

Raymond Ehlers (LBNL/UCB) - 28 March 2023

¹Mehtar-Tani et al., Phys. Rev. D 101, 034004 ²Caucal et al., JHEP 07 (2021) 020

Comparing grooming methods in 30-50% semi-central Pb-Pb

Comparing grooming methods in 0-10% central Pb–Pb

Searching for modification (with more methods)/1

Searching for modification (with more methods)/2

Comparing with models in 0-10% central Pb-Pb

Narrowing in $k_{T,g}$ vs R_g

Raymond Ehlers (LBNL/UCB) - 28 March 2023

Phys.Rev.Lett. 128 (2022) 10, 102001