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Outline
o Hard-soft factorized parton energy loss
o Calculation using pQCD transport coefficients
o Data-driven analysis of parton transport properties 
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Assuming medium length ≫
radiation formation time ≫
scattering mean free path
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Hard-soft factorization of parton energy loss

Benefits of the hard-soft factorization
o Non-perturbative effects absorbed in soft transport coefficients. 
o Soft transport coefficients can be constrained from measurements. 
o Stochastic description is numerically more efficient.
o Can be extended to next-to-leading order of parton-medium interaction. 

Interactions with the medium: 
o Large number of soft interactions
o Rare hard scatterings

Frequent soft interactions can be treated stochastically as diffusion process. 
Parton energy loss factorized as hard interactions + diffusion process. 

03/29/2023



5

Hard-soft factorization: 
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Hard-soft factorization of parton energy loss
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Soft interactions – drag and diffusion
Number and identity preserving soft interactions are described 
stochastically with drag and diffusion. 
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o Include both elastic and inelastic soft interactions. 
o Treated with Langevin model. 
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Brick test: weak coupling and beyond

We compare: collison rate treatment v.s. stochastic treatment
We use: pure glue medium; screened matrix elements for collision rates
We plot: energy distribution of a hard gluon propagating in a static medium

T = 300 MeV

E0 = 100GeV

Evolution time: 

t = 0.3/𝛼! "fm/c

∁!,C2/ only

∁!,C2/ + ∁!D!%1

We validate: the dependence of the single parton
energy distribution on the hard-soft cutoff

Energy loss is weakly dependent on the cutoffs.

α! = 0.3
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Estimation of 𝑄! in different collision systems
𝑄E: switch between high virtuality stage to low virtuality stage.  

𝑘F distribution
o Medium-induced emissions: integration of 2𝑞 along the path. 
o Vacuum emission: 𝑘F much larger than that accumulated in collisions 

during the formation. 

𝑄E should reflect the difference of 𝑘F" in two processes.  Rough estimation of 𝑄E: 
(assuming the medium evolves as conformal Bjorken expansion)
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QE" ∼ G𝑄E ⋅ 𝜏DG1%C𝑇EBo Introduce parameter: 



Model output using perturbation theory

Experimental measurement: 

to quantify the effect of QGP. 

Hard-soft factorized model in JETSCAPE: 
o Perturbative soft transport coefficients. 
o Difficult to tune multiple parameters to 

match multiple measurements at the 
same time. 
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Medium evolution: hydrodynamic simulation
High virtuality parton: DGLAP
High energy parton:  hard-soft factorized model
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Gaussian process emulator
Non-parametric regression to 

fast predict model outputs

Markov Chain Monte Carlo
Weighted random walk 

through parameter space

Posterior distribution
of model parameters

Physics model
Hard-soft factorized 

parton energy loss model

Model parameters
Strong coupling, transport 

coefficients, etc. 

Bayes’ theorem
𝑝 𝛩|𝑦 = 𝑦+,-
∝ 𝑝 𝜃 ×ℒ 𝑦 = 𝑦+,-|𝛩

Experimental data
Charged hadron energy 

loss in RHIC and LHC.

train

prior
likelihood

Bayesian model-to-data comparison

Goal: model-to-data comparison

o Simultaneously describe several 
sets of experimental data. 

o Quantitatively estimate the 
model parameters. 

o Quantify the non-perturbative 
effects of the soft interactions. 
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Parameterize the soft sector

Parameterized transport coefficients reproduce
the pQCD calculation at large energy scale. 
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Parameter Min Max

α,,D!%1.)'$ 0.1 0.4

T∗ 0.16 0.5

β: -0.8 2

β∥ -0.8 2
MQE 6.8 20.6

MQE : fixes the virtuality separation scale QE" ∼ G𝑄E ⋅ 𝜏DG1%C𝑇EB

coupling constant used in the soft sector is regulated by T∗:

soft sector transport coefficients parametrized in terms of β:, β∥:



Experimental data - posterior
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The posterior distribution constrained using
Bayesian model-to-data comparison: 

o 𝑅00 is not sensitive to 𝛽!: no constrain on 𝛽!.
o MAP is 𝛽∥ = 0.95. 
o Differs from pQCD assumption: 𝛽∥ = 0. 
o Non-perturbative effects in soft interactions. 
o 𝛽∥ correlated to 𝑇∗ : need additional 

observables to disambiguate. 

Constrain model parameters using 
experimental data: Au+Au ( 𝑠11 =
200 GeV) and Pb+Pb ( 𝑠11 = 2760
GeV) at different centralities. 
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Maximum A Posteriori (MAP): 
most possible set of parameters. 

Collision system Q# (GeV)

Au+Au, 200GeV, 0-10% 1.43

Au+Au, 200GeV, 20-30% 1.10

Au+Au, 200GeV, 40-50% 0.93

Pb+Pb, 2760GeV, 0-5% 2.78

Pb+Pb, 2760GeV, 30-40% 2.02
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Real data – observable emulation

Model-to-data comparison constrain the large prior range to a small posterior range close to the 
experimental observation. 
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Predict experimental measurement

Apply the posterior model parameters to 
calculate new observable: 
Au + Au collisions, 40-50% centrality. 

Constrained model parameters can 
describe data not used in the analysis. 
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Properties of parton transport

elastic *𝑞/
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Estimate the temperature dependence of the soft transport coefficients 
using the posterior of model parameters: 
o Large prior range is constrained to small posterior range. 
o Constrained soft !𝑞'/𝑇2 decreases slowly as the temperature increase. 
o Above pQCD value: non-perturbative effects. 

inelastic *𝑞/
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Properties of parton transport

Interactions with energy transfer ω < 4T.

average energy loss per unit length of a parton
traversing the QGP:
• calibration results show similar trends as the 

pQCD calculation 



Conclusion & Outlook
o Factorize the soft interactions out as a drag and diffusion process. 

o Bayesian model-to-data comparison to constrain drag and diffusion coefficients. 

o Quantify the non-perturbative effects in soft interactions. 
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o Add more features to the hard-soft factorized model (e.g. include finite-size effect). 

o More flexible parameterization of soft transport coefficients. 

o Compare with more observables. 



Backup Slides
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Emulate the Monte Carlo model

o Run hard-soft factorized model in JETSCAPE 
framework on the design points. 

o The computationally expensive model requires a 
fast surrogate. 

o The results on design points cover the data points. 
o Design points should be enough for the emulator. 
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Validation of the 
model emulator: 
the Gaussian process 
emulator works well. 



JETSCAPE framework

o A software framework to simulate the 
whole process of heavy ion collisions. 

o A modular-based Monte Carlo event 
generator. 

o An open-source package: 
https://github.com/JETSCAPE/JETSCAPE

Parton energy loss model
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https://github.com/JETSCAPE/JETSCAPE
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When can we use diffusion? 
Stochastic description of soft interactions
o Absorb non-perturbative effects
o Numerically more efficient
o Data-driven constraining

Range of the Fokker-Planck equation applicability

Define the scale (rough estimation): 
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In pQCD, 𝜇3 ≾ 𝑇, 𝑔𝑇 < 𝜇 450 < 𝑇. 
Beyond pQCD, how to choose the cutoffs? 

𝑆 ≪ 1, valid stochastic description. 



Numerical implementation in JETSCAPE
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Hard-soft factorized parton energy loss model

Transport of a high energy particle in QGP can be described using a Boltzmann function: 

For small momentum transfer, Boltzmann equation reduce to Fokker-Planck equation: 

Fokker-Planck equation can be realized using Langevin model: 

𝜕J + 𝑣⃗ R ∇K 𝑓L 𝑝⃗, 𝑥⃗, 𝑡 = −𝐶 𝑓

C1.22 f = −
𝜕
𝜕p.

η9 p p.f p −
1
2

𝜕"

𝜕p.𝜕pM
2p.2pM2q< p +

1
2 δ.M − 2p.2pM 2q p f p

Soft transport coefficients: η9, 2q<, 2q.  

𝐶 f = ∫ 𝑑B𝑘[𝜔 𝑝 + 𝑘, 𝑘 𝑓 𝑝 + 𝑘 − 𝜔 𝑝, 𝑘 𝑓(𝑝)]
Boltzmann function is linearized for high energy particles. 

∆7
∆.
= #

8
,

∆#
∆.
= −η&p + F.9:;<=>(t).
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AMY resumed integral
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Hard-soft factorization of parton energy loss

Interactions with the medium: 
o Large number of soft interactions
o Rare hard scatterings

Weakly-coupled effective kinetic formalism 
Leading-order realizations (e.g. MARTINI): 

𝜕J + 𝑣⃗ R ∇K 𝑓L 𝑝⃗, 𝑥⃗, 𝑡 = −∁L"↔" 𝑓 − ∁L#↔" 𝑓

Hard-soft factorization: 
∁!"↔" + ∁!#↔"

= ∁!
$!%&'(!)&$' 𝜇 *+! , Λ + ∁!

,-$./ Λ + ∁!
$!%&'(0 𝜇0 + ∁!1.22 𝜇 *+! , 𝜇0

&q" ≡ q# − ω#
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thermal energy

g ↔ gg
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Analytical: Blaizot, Iancu, Mehtar-Tani. 2013
Numerical: Dai, Paquet, Teaney, Bass. 2022
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Proton-proton baseline
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ATLAS 2015  

JETSCAPE PP19 tune
o Initial collisions: PYTHIA
o Parton evolution in vacuum: MATTER in vacuum

𝜋$ + 𝜋% /2
𝜂 < 0.35

𝜋$ + 𝜋% /2
𝜂 < 1
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PbPb RAA with different Q0



Sampling in parameter space
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Principal component analysis of model outputs

SVD decomposition of the model outputs. 

PCA to reduce high dimensional output space: 

o Multi-dimensional of the model outputs. 

o Gaussian process generates 1-d output. 

o Model outputs are highly-correlated. 

o Model uncertainties is uncorrelated. 

Cumulative variance to estimate how 
much information is preserved by the
first few PCs. 

Diagonal of S encodes PC’s varaince. 
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Posterior of model parameters

Markov chain Monte Carlo (MCMC) to sample the 
posterior of the parameter: 

o The sampler performs weighted random walk in 
the parameter space. 

o At each state 𝑥J, a new position 𝑥NOP is sampled. 

o The acceptance rate of 𝑥NOP is

39

o After the “burn-in” steps, the distribution of the 
accepted samples is the posterior distribution. 
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Gaussian process emulator

A non-parametric regressor to fast-predict model outputs: 
o A model of infinite-dimensional multivariate normal distributions.
o Require minimal assumption about the model. 
o Emulate a distribution over functions. 

Model output: 
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Validation of Gaussian process emulator

o Emulator works well. 
o Relative difference between the model calculation 

and the emulator prediction is normally distributed. 
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Validation of Gaussian process emulator

o Choose a validation point. 

o Calculate 𝑅@@ on the validation point 
in different collision systems. 

o Train the Gaussian process emulator 
using the training data. 

o Validate the trained emulator on the 
validation point. 

o The emulator well predict the model 
outputs. 
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Bayesian inference

Estimate the probability distribution of the model parameters given 
the experimental observations based on Bayes’ theorem: 

assuming a uniform distributed prior. 

Given the normally distributed model uncertainty, the likelihood 
function is written as: 

Estimate the true parameter value: 
o Maximum likelihood estimation (MLE)
o Maximum A Poseriori (MAP)
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Closure test - posterior
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The posterior distribution constrained using
Bayesian model-to-data comparison: 

o 𝑅@@ is not sensitive to 𝛽:: no constrain on 𝛽:.

o 𝛽∥ correlated to 𝑇∗ : weaker constrain, 
need more comparison to evaluate. 

o G𝑄E and 𝛼Q,RLST3NOU are well-constrained around 
“true values”. 

Closure test: 
o Assume a set of parameters as “true values”. 
o Calculate “constructed data” using “true values”. 
o Perform Bayesian analysis on “constructed data” to 

evaluate the performance of the Bayesian analysis. 
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Closure test – observables emulation

Observables emulated using posterior parameters are close to “constructed data”. 
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Closure test - posterior

Apply posterior of 𝛽∥ and 𝑇∗ to calculate 2𝑞6: 
well-constrained around  pQCD values. 

Model-to-data comparison performs well. 

elastic *𝑞/ inelastic *𝑞/
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