Exploring jet transport coefficients by elastic and radiative scatterings in the strongly interacting quark-gluon plasma

llia Grishmanovskii ITP, Frankfurt

In collaboration with Taesoo Song, Olga Soloveva, Carsten Greiner and Elena Bratkovskaya

Hard Probes 2023 28.03.23

- Introduction: jets
- Dynamical QuasiParticle Model (DQPM)
- Elastic and inelastic cross sections
- Transport coefficients in kinetic theory
- Summary

What is jet?

A jet is a collimated spray of hadrons generated via successive parton branchings, starting with a highly energetic and highly virtual parton (quark or gluon) produced by the collision

Why do we study jets?

- Early formation time
- Not thermalized in the medium
- Contain the information on the QGP properties

- DQPM effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS
- The QGP phase is described in terms of interacting quasiparticles massive quarks and gluons with Lorentzian spectral functions:

$$ho_j(\omega,{f p})=rac{4\omega\gamma_j}{\left(\omega^2-{f p}^2-M_j^2
ight)^2+4\gamma_j^2\omega^2}$$

• Field quanta are described in terms of dressed propagators with complex self-energies:

 $egin{aligned} ext{gluon propagator:} & \Delta^{-1} = P^2 - \Pi; & ext{quark propagator:} & S_q^{-1} = P^2 - \Sigma_q \ ext{gluon self-energy:} & \Pi = M_g^2 - 2i\gamma_g\omega; & ext{quark self-energy:} & \Sigma_q = M_q^2 - 2i\gamma\omega \end{aligned}$

- Real part of the self-energy thermal masses
- Imaginary part of the self-energy interaction widths of partons

Hard Probes 2023

28.03.23

P. Moreau et al., PRC 100, 014911 (2019)

Ilia Grishmanovskii ITP, Frankfurt

DQPM ingredients

Hard Probes 2023

28.03.23

Masses and widths of quasiparticles depend on the temperature of the medium and $\mu_{\scriptscriptstyle \mathrm{R}}$

O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510

6

There are four effects that make the DQPM different from the "pure" pQCD:

- 1. non-perturbative origin of the strong coupling which depends on (T, μ_B);
- 2. finite masses of the intermediate parton propagators (screening masses);
- 3. finite masses of the medium partons;
- 4. finite widths of partons.

DQPM partonic interactions are described in terms of leading order diagrams:

$qg \rightarrow qg$ scattering

 $gg \rightarrow gg$ scattering

On-shell: final masses = pole masses

 M_1

 M_{2}

 $d\sigma^{\rm on} = \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - p_3 - p_4\right) \frac{|\bar{\mathcal{M}}|^2}{F}$

Off-shell: integration over final masses

$$Fd\sigma^{\text{off}} = \frac{d^4 p_3}{(2\pi)^4} \frac{d^4 p_4}{(2\pi)^4} \tilde{\rho}_3(\omega_3, \mathbf{p}_3) \ \theta(\omega_3) \ \tilde{\rho}_4(\omega_4, \mathbf{p}_4) \ \theta(\omega_4)$$
$$\times (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - p_3 - p_4 \right) |\bar{\mathcal{M}}|^2$$

DQPM partonic cross sections

g

DQPM angular dependence for differential cross sections (scaled by g⁴) for different reactions (CMS)

- → DQPM reproduces pQCD cross sections for masses and widths →0
- → DQPM angular distribution is more "isotropic" then pQCD
- → the off-shell effects are small for energetic partons and for high T

 \rightarrow strong *T* dependence

10

pQCD result: F. A. Berends et al., Phys. Lett., B103, 124 (1981)

$$\Pi_{\mu\nu}(k) = \begin{bmatrix} -i\frac{g_{\mu\nu} - (k_{\mu}k_{\nu})/M_g^2}{k^2 - M_g^2 + 2i\gamma_g\omega_k} \end{bmatrix} \quad \text{(gluon propagator)},$$
$$\Lambda(k) = \begin{bmatrix} i\frac{\not k + M_q}{k^2 - M_q^2 + 2i\gamma_q\omega_k} \end{bmatrix} \quad \text{(quark propagator)},$$
$$V_{ik}^{\nu,a} = (-ig\gamma^{\nu}T_{ik}^a) \quad \text{(vertex)},$$

 $i\mathcal{M}_{1} = \bar{u}^{l}(p_{2})V_{lk}^{\nu,a}u^{k}(p_{b})\Pi_{\mu\nu}(p_{b} - p_{2})\bar{u}^{j}(p_{1})\varepsilon_{\tau}^{*}(p_{3})V_{jm}^{\tau,b}\Lambda(p_{1} + p_{3})V_{mi}^{\mu,a}u^{i}(p_{a})$ $i\mathcal{M}_{2} = \bar{u}^{j}(p_{1})V_{ji}^{\mu,a}u^{i}(p_{a})\Pi_{\mu\nu}(p_{a} - p_{1})\bar{u}^{l}(p_{2})\varepsilon_{\tau}^{*}(p_{3})V_{lm}^{\tau,b}\Lambda(p_{2} + p_{3})V_{mk}^{\nu,a}u^{k}(p_{b})$ $i\mathcal{M}_{3} = \bar{u}^{l}(p_{2})V_{lk}^{\nu,a}u^{k}(p_{b})\Pi_{\mu\nu}(p_{b} - p_{2})\bar{u}^{j}(p_{1})V_{jm}^{\mu,a}\Lambda(p_{a} - p_{3})\varepsilon_{\tau}^{*}(p_{3})V_{mi}^{\tau,b}u^{i}(p_{a})$ $i\mathcal{M}_{4} = \bar{u}^{j}(p_{1})V_{ji}^{\mu,a}u^{i}(p_{a})\Pi_{\mu\nu}(p_{a} - p_{1})\bar{u}^{l}(p_{2})V_{lm}^{\nu,a}\Lambda(p_{b} - p_{3})\varepsilon_{\tau}^{*}(p_{3})V_{mk}^{\tau,b}u^{k}(p_{b})$

$$i\mathcal{M}_{5} = \bar{u}^{j}(p_{1})V_{ji}^{\mu,a}u^{i}(p_{a})\ \bar{u}^{l}(p_{2})V_{lk}^{\lambda,c}u^{k}(p_{b})\Pi_{\mu\nu}(p_{a}-p_{1})$$
$$\times\Pi_{\lambda\sigma}(p_{b}-p_{2})\varepsilon_{\tau}^{*}(p_{3})\left(-gf^{abc}C^{\sigma\tau\nu}(p_{b}-p_{2},-p_{3},p_{2}-p_{b}+p_{3})\right)$$

→ emitted gluon is massive!

Partonic inelastic interactions: $q+g \rightarrow q+g+g$

Ilia Grishmanovskii ITP, Frankfurt

11

u-channel

Partonic cross sections: elastic vs inelastic

Ilia Grishmanovskii ITP, Frankfurt Hard Probes 2023 28.03.23

12

Temperature dependence

→ enhancement of radiative cross section for small temperatures

→ suppression of radiative cross section for small energies

Ilia Grishmanovskii ITP, Frankfurt

13

Dependence on the mass of the emitted gluon

Transport coefficients in kinetic theory

14

On-shell:

- integration over momentums
- masses = pole masses

$$egin{aligned} &\langle \mathcal{O}
angle^{ ext{on}} =& rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^3 p_j}{(2\pi)^3 2E_j} \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^3 p_2}{(2\pi)^3 2E_2} \ & imes (1\pm f_1)(1\pm f_2) \mathcal{O} |\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)}(p_i+p_j-p_1-p_2) \end{aligned}$$

Off-shell:

- integration over momentums
- + two additional integrations over medium partons energy

$$egin{aligned} &\langle \mathcal{O}
angle^{ ext{off}} = &rac{1}{2E_i} \sum_{j=q,ar{q},g} d_j f_j \int rac{d^4 p_j}{(2\pi)^4}
hoig(\omega_j,\mathbf{p}_jig) heta(\omega_j) \ & imes \int rac{d^3 p_1}{(2\pi)^3 2E_1} \int rac{d^4 p_2}{(2\pi)^4}
hoig(\omega_2,\mathbf{p}_2ig) heta(\omega_2) \ & imes (1\pm f_1)(1\pm f_2) \mathcal{O}|\overline{\mathcal{M}}|^2 (2\pi)^4 \delta^{(4)}(p_i+p_j-p_1-p_2) \end{aligned}$$

$$\mathcal{O} = |\vec{p_T} - \vec{p_T}'|^2 \to \langle O \rangle = \hat{q}$$
$$\mathcal{O} = (E - E') \to \langle O \rangle = dE/dx$$

Results: q-hat from elastic processes

Ilia Grishmanovskii ITP, Frankfurt

15

9 DQPM (10 GeV/c) DQPM (100 GeV/c) 8 LBT $[N_f = 3]$ Lattice [Pure SU(3)] 7 Lattice [(2+1)-flavor] JETSCAPE 6 Ŧ JET 5 â/T³ 3 2 1 0 0.2 0.4 0.6 0.8 1.0

The DQPM q-hat(T) for elastic scattering of a jet quark vs other models

T[GeV]

JET: K. M. Burke et al., *PRC 90, 014909 (2014)* **IQCD:** A. Kumar et al., PRD.106.034505 **LBT:** Y. He et al., *PRC 91 (2015)* **JETSCAPE:** S. Cao et al. PRC 104, 024905 (2021)

I.Grishmanovskii, T.Song, O.Soloveva, C.Greiner, E.Bratkovskaya, Phys. Rev. C 106, 014903

Results: q-hat and energy loss

Ilia Grishmanovskii ITP, Frankfurt

16

Energy dependence of the scaled q-hat

Energy dependence of the scaled energy loss dE/dx

 \rightarrow All models predict logarithmic growth of q-hat and dE/dx with jet energy (momentum)

Ilia Grishmanovskii ITP, Frankfurt Hard Probes 2023 28.03.23

17

- → inelastic q-hat is suppressed for low jet momentum, but can be significant for high momentum
- → emitted gluon mass is important

Outlook

18

Summary:

- Elastic and inelastic cross sections are calculated within DQPM
- Transport coefficients (q-hat and dE/dx) are evaluated for the propagation of the jet parton through the strongly interacting QGP based on the DQPM
- DQPM predicts stronger energy loss than pQCD models
- DQPM reproduces the pQCD limits for zero masses and widths of medium partons

Future:

• Implementing cross sections into full transport simulation (PHSD)