On the momentum broadening of in-medium jet evolution using a light-front Hamiltonian approach

Meijian Li¹,

In collaboration with: Tuomas Lappi^{2,3}, Xingbo Zhao^{4,5}, and Carlos A. Salgado¹

- 1. Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, E-15782 Galicia, Spain
- 2. Department of Physics, University of Jyväskylä, Finland
- 3. Helsinki Institute of Physics, University of Helsinki, Finland
- 4. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- 5. University of Chinese Academy of Sciences, Beijing 100049, China

@ Hard Probes, March 28th, 2023

Methodology: Time-dependent Basis Light-Front Quantization (tBLFQ)¹

- Light-front quantization
 - The quantum field is quantized on the equal lightfront time surface $x^+ (\equiv x^0 + x^3) = 0$

- Hamiltonian formalism
 - The state obeys the Schrödinger equation $\frac{1}{2}P^{-}(x^{+})|\psi(x^{+})\rangle = i\frac{\partial}{\partial x^{+}}|\psi(x^{+})\rangle$

A nonperturbative treatment: numerically evaluating the evolution in sequential small timesteps

Basis representation

• Optimal basis has the same symmetries of the system, and it is the key to numerical efficiency

1. J. P. Vary, H. Honkanen, Jun Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond, P. Sternberg, E. G. Ng, C. Yang., Phys. Rev. C81, 035205 (2010); X. Zhao, A. Ilderton, P. Maris, and J. P. Vary, Phys. Rev. D88, 065014 (2013).

Methodology: A. The light-front Hamiltonian $P^{-}(x^{+})$

We consider scattering of a highenergy quark moving in the positive z direction, on a high-energy nucleus moving in the negative z direction.

Methodology: A. The light-front Hamiltonian $P^{-}(x^{+})$

We consider scattering of a highenergy quark moving in the positive z direction, on a high-energy nucleus moving in the negative z direction.

> The light-front Hamiltonian is derived from the QCD Lagrangian with a background color field A_{μ} ,

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}_{\ a} F^a_{\mu\nu} + \overline{\Psi} (i\gamma^{\mu} D_{\mu} - m) \Psi$$

where $D_{\mu} = \partial_{\mu} + ig(A_{\mu} + A_{\mu})$. In the $|q\rangle + |qg\rangle$ space, it includes the kinetic energy, the interaction with the background field, and gluon emission/absorption:

 $P^{-}(x^{+}) = P^{-}_{KE} + V(x^{+})$ The interaction matrix $V(x^{+}) = V_{qg} + V_{\mathcal{A}}(x^{+})$

Methodology: A. The light-front Hamiltonian $P^{-}(x^{+})$

We consider scattering of a highenergy quark moving in the positive z direction, on a high-energy nucleus moving in the negative z direction.

- The background color field \mathcal{A}_{μ} is a classical gluon field described by the color glass condensate¹
 - Color charges are stochastic variables with correlations

 $<\rho_a(x^+,\vec{x}_\perp)\rho_b(y^+,\vec{y}_\perp)>={\rm g}^2\tilde{\mu}^2\delta_{ab}\delta^2(\vec{x}_\perp-\vec{y}_\perp)\delta(x^+-y^+)$

• The color field is solved from

 $(m_g^2 - \nabla_{\perp}^2)\mathcal{A}_a^-(x^+, \vec{x}_{\perp}) = \rho_a (x^+, \vec{x}_{\perp})$

where m_g is a chosen infrared (IR) regulator.

The color sources of different layers are independent of each other, simulating the quarks from different nucleons of the heavy ion
The duration of the interaction: x⁺ = [0, L_η]
Number of layers: N_η
The duration of each layer: τ = L_η/N_η

• Saturation scale:

$$Q_{\rm s}^2 = C_{\rm F} \, (g^2 \tilde{\mu})^2 L_{\eta} / (2\pi)$$

Methodology: B. Basis representation

> The quantum state is expanded in **the basis states**:

$$|\psi; x^{+}\rangle = \sum_{\beta} c_{\beta}(x^{+})|\beta\rangle, \qquad \qquad |q\rangle: |\beta_{q}\rangle; \quad |qg\rangle: |\beta_{qg}\rangle = |\beta_{q}\rangle \otimes |\beta_{g}\rangle$$

Each single particle state carries five quantum numbers: $\beta_l = \{k_l^x, k_l^y, k_l^+, \lambda_l, c_l\}, (l = q, g)$ the transverse momenta, the longitudinal momentum, helicity, and color

Methodology: B. Basis representation

> The quantum state is expanded in the basis states:

$$|\psi; x^{+}\rangle = \sum_{\beta} c_{\beta}(x^{+})|\beta\rangle, \qquad \qquad |q\rangle: |\beta_{q}\rangle; \quad |qg\rangle: |\beta_{qg}\rangle = |\beta_{q}\rangle \otimes$$

Each single particle state carries five quantum numbers: $\beta_l = \{k_l^x, k_l^y, k_l^+, \lambda_l, c_l\}, (l = q, g)$ the transverse momenta, the longitudinal momentum, helicity, and color

Basis size:
$$N_{tot} = (2N_{\perp})^2 \times 2 \times 3 + K \times (2N_{\perp})^4 \times 4 \times 24$$

 $|\beta_g\rangle$

Methodology: C. Time evolution

Solve the time-evolution equation in the interaction picture

$$\frac{1}{2}V_{I}(x^{+})|\psi;x^{+}\rangle_{I} = i\frac{\partial}{\partial x^{+}}|\psi;x^{+}\rangle_{I}$$

• P_{KE}^- as a phase factor: $|\psi; x^+\rangle_I = e^{\frac{i}{2}P_{KE}^- x^+} |\psi; x^+\rangle$, $V_I(x^+) = e^{\frac{i}{2}P_{KE}^- x^+} V(x^+) e^{-\frac{i}{2}P_{KE}^- x^+}$

• Time evolution as a product of many small timesteps $|\psi; x^+\rangle_{I} = \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{0}^{x^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$ $= \lim_{n \to \infty} \prod_{k=1}^{n} \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^+}^{x_k^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$

Methodology: C. Time evolution

Solve the time-evolution equation in the interaction picture

$$\frac{1}{2}V_{I}(x^{+})|\psi;x^{+}\rangle_{I} = i\frac{\partial}{\partial x^{+}}|\psi;x^{+}\rangle_{I}$$

• P_{KE}^- as a phase factor: $|\psi; x^+\rangle_I = e^{\frac{i}{2}P_{KE}^- x^+} |\psi; x^+\rangle$, $V_I(x^+) = e^{\frac{i}{2}P_{KE}^- x^+} V(x^+) e^{-\frac{i}{2}P_{KE}^- x^+}$

Time evolution as a product of many small timesteps

$$|\psi; x^+\rangle_{I} = \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{0}^{x^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$$

$$= \lim_{n \to \infty} \prod_{k=1}^{n} \mathcal{T}_{+} \exp\{-\frac{i}{2}\int_{x_{k-1}^+}^{x_k^+} dz^+ V_{I}(z^+)\} |\psi; 0\rangle_{I}$$

•

Each timestep contains two successive operations, and we choose suitable numerical method for the two different interactions:

matrix exponential in coordinate space +4th-orderFast Fourier Transform, $\sim O(N_{tot} \log N_{tot})$ $\sim O(N_{tot})$

4th-order Runge-Kutta method, $\sim O(N_{tot})$

The total computational complexity of each timestep is $O(N_{tot} \log N_{tot})$.

• With the obtained light-front wavefunction, physical quantities can be evaluated directly with the corresponding operators

$$\langle p_{\perp}^{2}(x^{+}) \rangle = \langle \psi; x^{+} | p_{\perp}^{2} | \psi; x^{+} \rangle$$

• The quark state transfers to different momentum modes through evolution. Such momentum broadening can be characterized by the quenching parameter:

$$\widehat{q} \equiv \frac{\Delta \langle p_{\perp}^2(x^+) \rangle}{\Delta x^+}$$

a) The single quark state $|q\rangle$

• Eikonal, $p^+ = \infty$

The momentum broadening can be calculated analytically using Wilson lines:

$$\left\langle p_{\perp}^{2}(x^{+}) \right\rangle_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right] x^{+},$$
$$\hat{q}_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right], \lambda_{UV} = \pi/a_{\perp}$$

a) The single quark state $|q\rangle$

• Eikonal, $p^+ = \infty$

The momentum broadening can be calculated analytically using Wilson lines:

$$\left\langle p_{\perp}^{2}(x^{+}) \right\rangle_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right] x^{+},$$
$$\hat{q}_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right], \lambda_{UV} = \pi/a_{\perp}$$

 \checkmark Numerical results are verified

a) The single quark state $|q\rangle$

• Eikonal, $p^+ = \infty$

The momentum broadening can be calculated analytically using Wilson lines:

$$\left\langle p_{\perp}^{2}(x^{+}) \right\rangle_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right] x^{+},$$
$$\hat{q}_{Eik} = \frac{Q_{s}^{2}}{2L_{\eta}} \left[\log \frac{\lambda_{UV}^{2} + m_{g}^{2}}{m_{g}^{2}} - \frac{\lambda_{UV}^{2}}{\lambda_{UV}^{2} + m_{g}^{2}} \right], \lambda_{UV} = \pi/a_{\perp}$$

 \checkmark Numerical results are verified

- Non-eikonal, $p^+ < \infty$
 - 1) ``layer'' effect, $\langle p_{\perp}^2(x^+) \rangle \propto (x^+)^2$ within layer, $\langle p_{\perp}^2(x^+) \rangle \propto x^+$ across layers
 - 2) \hat{q} is smaller in the non-eikonal case with finite layers

b) The quark-gluon state $|qg\rangle$

• Eikonal, $p^+ = \infty$

The momentum square can be calculated analytically using Wilson lines:

$$\langle p_{\perp}^{2}(x^{+})\rangle_{qg,c;Eik} = \left\langle \vec{p}_{q,\perp}^{2}(x^{+})\rangle_{Eik} + \left\langle \vec{p}_{g,\perp}^{2}(x^{+})\rangle_{Eik} + \left(2\langle \vec{p}_{q,\perp}(x^{+}) \cdot \vec{p}_{g,\perp}(x^{+})\rangle_{c;Eik}\right)\right\rangle_{c;Eik}$$

Same as that of a single quark (gluon)

$$\langle \vec{p}_{q,\perp}(x^{+}) \cdot \vec{p}_{g,\perp}(x^{+}) \rangle_{c} = -\int d^{2} v_{\perp} f_{Rel}(\vec{v}_{\perp}) s_{12}(v_{\perp}) \begin{cases} 0, & c = 3 \otimes 8 \\ -\frac{3\sqrt{2}}{2}, & c = 3 \\ -\frac{\sqrt{2}}{2}, & c = \bar{6} \\ \frac{\sqrt{2}}{2}, & c = 15 \end{cases}$$
qg relative transverse coordinate \vec{v}_{\perp}

b) The quark-gluon state $|qg\rangle$

• Eikonal, $p^+ = \infty$

The momentum square can be calculated analytically using Wilson lines:

$$\langle p_{\perp}^{2}(x^{+})\rangle_{qg,c;Eik} = \langle \vec{p}_{q,\perp}^{2}(x^{+})\rangle_{Eik} + \langle \vec{p}_{g,\perp}^{2}(x^{+})\rangle_{Eik} + \left[2\langle \vec{p}_{q,\perp}(x^{+})\cdot\vec{p}_{g,\perp}(x^{+})\rangle_{c;Eik}\right]$$

Consider a quark-gluon initial state with small and large separation

- **b)** The quark-gluon state $|qg\rangle$
 - Eikonal, p⁺ = ∞
 ✓ Numerical results agree with analytical

b) The quark-gluon state $|qg\rangle$

Eikonal, p⁺ = ∞
 ✓ Numerical results agree with analytical

• Non-eikonal, $p^+ = 1.5$ GeV correlation is suppressed due to space diffusion

c) The dressed quark state $|q\rangle + |qg\rangle$

• In the $|q\rangle + |qg\rangle$ space, consider the initial state as a single quark state,

 $\left< p_{\perp}^{2}(x^{+}) \right>_{total} = \left< q | p_{\perp}^{2}(x^{+}) | q \right> + \left< q g | p_{\perp}^{2}(x^{+}) | q g \right>$

- c) The dressed quark state $|q\rangle + |qg\rangle$
- In the $|q\rangle + |qg\rangle$ space, consider the initial state as a single quark state,

$$\left\langle p_{\perp}^{2}(x^{+})\right\rangle_{total} = \left\langle q|p_{\perp}^{2}(x^{+})|q\right\rangle + \left\langle qg|p_{\perp}^{2}(x^{+})|qg\right\rangle$$

c) The dressed quark state $|q\rangle + |qg\rangle$

Summary and outlooks

- > Following the non-perturbative light-front Hamiltonian formalism developed in our preceding work [1],
 - 1. We investigated the momentum broadening of an in-medium quark jet in both the eikonal and **non-eikonal** regimes [2].
 - 2. A main advantage of this method: one can smoothly vary the separate magnitudes of kinetic energy, gluon emission, and medium effects.
- Ongoing study:
 - A different scenario: The quark coming from outside the medium, described by the fully developed wave function that contains a gluon cloud.
- Parallel study: Quantum Simulation of jet evolution in a medium [3] [Wednesday, 10:50, Wenyang Qian]

[1] <u>M. Li</u>, T. Lappi, and X. Zhao, Phys. Rev. D 104, 056014 (2021)
[2] <u>M. Li</u>, T. Lappi, X. Zhao, and Carlos A. Salgado, to appear
[3] J. Barata, X. Du, <u>M. Li</u>, W. Qian, and C. A. Salgado, Phys. Rev. D 106 (2022) 7, 074013; and ongoing works

