ATLAS measurements of *b*-jet suppression and heavy-flavor azimuthal correlations in 5.02 TeV Pb+Pb collisions

Sebastian Tapia Araya Universidad Tecnica Federico Santa Maria for the ATLAS collaboration

29 March 2023, Valparaiso, Chile

Heavy flavors in heavy ion collisions

- Open heavy flavors (HF) quarks c, b are produced early in the collision; masses above QGP temperature
- HF in heavy ion collisions are sensitive probes to energy loss mechanisms and QGP transport properties
- HF pair angular correlations have additional sensitivity to QGP-induced angular deflection

Mass dependence expected due to "dead-cone effect"

Heavy flavors in heavy ion collisions

- Good agreement from several measurements of different collaborations, using muons, D's, J/ Ψ as a proxy for HF
- Sensitive to only part of the HF momentum -> need of fragmentation function and decay kinematics to get HF scale (model dependent)

ATLAS muon: arXiv:2109.00411 ATLAS J/ψ: EPJC 78 (2018) 762 ATLAS b-jet: HION-2018-24 ALICE D^o: arXiv:2202.00815 CMS J/w: EPJC 78 (2018) 509

b-jets from semi-leptonic decays

b-jets vs inclusive jets in pp collisions

- Comparison to CMS results consistent within errors
- Ratio consistent with flat within uncertainties, relevant for R_{AA} modification interpretation

b-jets vs inclusive jets in Pb+Pb collisions

Nuclear modification factor, R_{AA} , measured for *b*-jets and inclusive jets:

- Similar suppression in peripheral collisions
- *b*-jet found to be less suppressed than inclusive jets in central collisions
- Both calculations capture the R_{AA} difference
- LIDO calculations reproduce well the measured R_{AA}

b-jets vs inclusive jets in Pb+Pb collisions

Nuclear modification factor, R_{AA} , measured for *b*-jets and inclusive jets:

- Similar suppression in peripheral collisions
- b-jet found to be less suppressed than inclusive jets in central collisions
- Both calculations capture the R_{AA} difference
- LIDO calculations reproduce the measured R_{AA} better

	Г	
	_	
	_	
		1
		_
	_	
		٦
		1
	•	
		_
		\neg
	_	
		1
		_
	-	
	_	
	_	
	ı.	
\cap		
U		
1~		7

b-jets vs inclusive jets in Pb+Pb collisions

Ratio of nuclear modification factor, R_{AA} , between b-jets and inclusive jets:

- Ratio consistent with unity in peripheral and ~20% above unity in central collisions
- Dai et al, calculations reproduce well R_{AA} ratio

• Smaller systematic uncertainties than R_{AA}, systematic uncertainties which are shared cancel in ratio

Ratio of nuclear modification factor, R_{AA} , between b-jets and inclusive jets:

- Ratio consistent with unity in peripheral and ~20% above unity in central collisions
- Dai et al, calculations are able to reproduce R_{AA} ratio better than LIDO

• Smaller systematic uncertainties than R_{AA} , systematic uncertainties which are shared cancel in ratio

But interpretation is not so direct

 Large contribution from gluon-splitting b-jets are sensitive to quark mass but also flavor 0 different fragmentation than direct b production

- - Caveat: different R and centrality, spectra

HF muon pair selection

 $b - \bar{b}$ correlation at 2 TeV from **pQCD**

- **back-to-back** muon pairs from LO pair production processes sensitive to induced angular broadening:
- Rapidity gap between two muons: $|\Delta \eta| > 0.8$
 - Suppress HF-bkg contribution from jets
 - Suppress gluon splitting contribution
- Azimuthal correlation at $\Delta \phi \sim \pi$:
 - Enhanced Back-to-back pair production contribution
 - Smaller contribution of flavor excitation
 - Small non-HF bkg contamination

Back-to-back yield extraction

HF pair azimuthal correlation — yields

- \bullet
- Same-sign and Opposite-sign pairs have a similar trend

Larger suppression on back-to-back HF pair production in central wrt. peripheral

HF pair azimuthal correlation — width

- Comparable width between different centralities and between Pb+Pb and pp
- Centrality-independent width indicates small angular deflection. In weakly interacting picture: important role of radiative energy loss

Summary

b-jet R_{AA} measured by tagging semi-leptonic decays

- *b*-jet in central collisions were found to be less suppressed than inclusive jets
- HF pair azimuthal correlation measured with muon pairs
 - No significant broadening observed in the azimuthal correlation

Thank you!

Additional slides

b-jets muon fragmentation

p⊤-rel is sensitive to muon momentum modeling

Independent test on muon fragmentation function, "z", using measured flavor-fractions

$$z = p_T^{\mu} cos(\theta) / p_T^{jet+\mu}$$

The muon momentum distribution is well reproduced by PYTHIA8

PYTHIA8 setting:

- **A14** (ATLAS-PHYS-PUB-2014-021)
- NNPDF23LO (arXiv:1207.1303)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/HION-2018-24/

b-jets *pp* cross-section

 $p_{_{\rm T}}$ [GeV]

- *b*-jet cross-section measured for Jet R = 0.2, and 0.4 in pp collisions
- Fully unfolded results include neutrino energy, b-jet pT range: 80-250 GeV
- Results are compared against generators and theoretical calculations

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ PAPERS/HION-2018-24/

b-jets R_{AA} CMS comparison

b-jets systematics

 $R_{AA}^{b-jet}/R_{AA}^{inclusive jet}$ Fractional Uncertainty

Hadron to muon smearing in Pythia

azimuthal angle smearing

p⊤ shift and smearing

