





# Jet quenching studies with new jet substructure and suppression measurements in ATLAS

# Martin Rybar

on behalf of ATLAS collaboration

Hard Probes 2023

28<sup>th</sup> March 2023

# Why jet substructure?

• Jets are not point-like but complex & multiscale objects.



# Why jet substructure in HI?

• Jets are not point-like but complex & multiscale objects.



- We can use various jet substructure observables to probe different regimes.
  - What are the properties and degrees of freedom of QGP at length scales between point-like partons and hydrodynamic modes?
  - How does the color charge interact and lose energy?
  - What are the effective scales of the interactions determining the energy loss?



"Conventional" jet made of particles/tracks/towers/clusters





Focusing on hard substructure...

"Conventional" jet made of particles/tracks/towers/clusters

De-clustered & groomed jet with SoftDrop

Declustering follow the splitting evolution; grooming parameters ⇔ affects physics.







"Conventional" jet made of particles/tracks/towers/clusters

De-clustered & groomed jet with SoftDrop **Re-**clustered jet from smaller jets

Declustering follow the splitting evolution; grooming parameters ⇔ affects physics.

Large-R jets designed for boosted W/Z/t; focus on hard structure; sub-jets.





"Conventional" jet made of particles/tracks/towers/clusters

De-clustered & groomed jet with SoftDrop Substructure of *R*=0.4 jets arXiv:2211.11470 **Re**-clustered jet from smaller jets

Substructure of R=1.0 jets arXiv:2301.05606

# **Dependence of suppression on jet structure?**



J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

Can be addressed by measurement of jet  $R_{AA}$  as a function of their sub-structure.

• Classifying *R* =0.4 jets using angular separation of the hardest splitting



Groomed jet

• Fully corrected & absolutely normalized cross-sections & yields.



• Fully corrected & absolutely normalized cross-sections & yields.



• Fully corrected & absolutely normalized cross-sections & yields.



arXiv:2211.11470

#### Suppression vs parton splittings

r<sub>g</sub>



Strong dependence of jet suppression on  $r_g$ . How can we understand the  $r_g$  vs  $p_T$  dependence?

# Jet $p_{T}$ dependence of the suppression

arXiv:2211.11470



Lack of  $p_{T}$  dependence of  $R_{AA}$  for jets with similar structure

# Jet $p_{T}$ dependence of the suppression

arXiv:2211.11470



15



#### **Re-clustered large-***R***jets**



#### **Observables and analysis procedure**

Measurement of yields of re-clustered R=1.0 jets as function of p<sub>T</sub>, angular separation, and k<sub>t</sub> splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor  $R_{AA}$ .



Raw sub-jet multiplicity

#### **Observables and analysis procedure**

Measurement of yields of re-clustered R=1.0 jets as function of p<sub>T</sub>, angular separation, and k<sub>t</sub> splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor  $R_{AA}$ .



Raw sub-jet multiplicity

#### **Observables and analysis procedure**

• Measurement of yields of re-clustered R=1.0 jets as function of  $p_{T}$ , angular separation, and  $k_t$  splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor  $R_{AA}$ .



Raw sub-jet multiplicity



Overall jets are suppressed in by factor ~2 (except red points) in central Pb+Pb.













#### **Re-clustered jets vs substructure**



- Significant change of the R<sub>AA</sub> magnitude between jets with single sub-jet and and those with more complex substructure.
- The  $R_{AA}$  sharply decreases followed by flattening.

28

arXiv:2301.05606

#### **Re-clustered jets vs substructure**



- The  $R_{AA}$  sharply decreases followed by flattening.
- Similar observation for suppression as function of angular separation.







# Summary

- Jet substructure in HI is a rapidly developing area
- Two new complementary measurement by ATLAS
  - Jet suppression depends significantly on jet substructure.
  - Probing role on angular scale from distance 0.003 up to 1.0 ⇔ should help addressing color coherence phenomena.
  - Testing role of  $p_{T}$  scale of hardest splitting.
  - Addresses the  $p_{T}$  dependence of inclusive suppression.
  - Run 3 data should allow similar measurements in photon-tagged systems.
- All data including yields & cross-section are <u>available</u>.





# **Challenges in jet structure measurements**

- Push towards larger phase space: lower energy and various/larger radius.
- Large UE contribution from soft particles.
- Combinatorial background from independent hard scatterings.
- For calorimetric measurement:
  - Jet energy calibration and uncertainties for every new jet "collection".... different radius, subjects, and constituents.
- Role of ISR@FSR
- Choice of setting in grooming...
  - Sensitive to modeling and subtraction.
  - Need to understand biases we introduce.



# **Splitting scale**



# **Clustered large-R jet RAA**



#### Inclusive je RAA



#### **Additional material**



#### **Additional material**



#### **Additional material**

