

A multi-messenger Bayesian Inference analysis of QGP jet transport using inclusive hadron and reconstructed jet data by JETSCAPE

Yi Chen (MIT) for the JETSCAPE collaboration Mar 28, 2023. Hard Probes 2023

Manuscript in preparation 23XX.XXXXX The MITHIG's work is supported by DOE-NP

A multi-messenger **Bayesian** Inference analysis of QGP jet transport using inclusive hadron and reconstructed jet data by JETSCAPE

Yi Chen (MIT) for the JETSCAPE collaboration Mar 28, 2023. Hard Probes 2023

Manuscript in preparation 23XX.XXXXX The MITHIG's work is supported by DOE-NP

Global Analysis

Gain physics insight by rigorous comparison

Global Analysis

Bayesian analysis

ANALYSIS

Bayes' theorem: $P(\vec{\theta} \mid \vec{x}) = \frac{P(\vec{x} \mid \vec{\theta})P(\vec{\theta})}{P(\vec{x})}$ **Posterior** encodes all we want to learn

Allows a computationally tractable way to extract parameters (though still CPU intensive)

Generally not dissimilar to previous analyses (backup)

First analysis (2021)

DATA

Hadron R_{AA}

3 energies 2 centralities each

Recreate experimental uncertainty correlation the best we can MODEL

Extract $\hat{q}(T, E, Q)$

Goal: one step forward from the JET result unified \hat{q} across energy

Multistage: MATTER+LBT

Current iteration

DATA

Hadron & jet R_{AA}

3 energies ALL eligible data

Recreate experimental uncertainty correlation the best we can MODEL

Extract $\hat{q}(T, E, Q)$ **Re-parametrize** \hat{q}

Sample full posterior from JETSCAPE soft sector result

MATTER+LBT

Goal: Explore what jets bring to the table

JETSCAPE framework

Modular framework:

- Easily extendible
- Testing out different modules while holding everything else identical
- Unified framework for complete heavy-ion events

Parametrization of \hat{q}

$$\hat{q}(E, T, Q) = \hat{q}_{HTL}^{run} \times f(Q^2)$$

$$\hat{q}_{HTL}^{run} = \alpha_{s,fix} \times \alpha_s(\mu^2) C_a \frac{42 \zeta(3)}{\pi} T^3 \ln\left(\frac{\mu^2}{6\pi T^2 \alpha_{s,fix}}\right)$$
Inspired from exponential "PDF": $f_{QGP}(x) \sim e^{-c_3 x}$

$$\int \exp\left(c_3 \left(1 - \frac{Q^2}{2EM}\right)\right) - 1$$

$$\int \frac{f(Q^2)}{1 + c_1 \ln(Q^2/\Lambda_{QCD}^2) + c_2 \ln(Q^2/\Lambda_{QCD}^2)}\right|_{Q^2 \ge Q_0^2}$$
Set by $f(Q_0^2) = 1$
Other parameters
Q₀: virtuality switch to LBT

 τ_0 : start time

Parametrization of \hat{q}

$$\hat{q}(E, T, Q) = \hat{q}_{HTL}^{run} \times f(Q^2)$$

$$\hat{q}_{HTL}^{run} = \alpha_{s,fix} \times \alpha_s(\mu^2) C_a \frac{42 \zeta(3)}{\pi} T^3 \ln\left(\frac{\mu^2}{6\pi T^2 \alpha_{s,fix}}\right)$$
Inspired from exponential "PDF": $f_{QGP}(x) \sim e^{-c_3 x}$

$$\exp\left(c_3 \left(1 - \frac{Q^2}{2EM}\right)\right) - 1$$

$$f(Q^2) = N_0 \frac{1 + c_1 \ln(Q^2 / \Lambda_{QCD}^2) + c_2 \ln(Q^2 / \Lambda_{QCD}^2)}{1 + c_1 \ln(Q^2 / \Lambda_{QCD}^2) + c_2 \ln(Q^2 / \Lambda_{QCD}^2)} \Big|_{Q^2 \ge Q_0^2}$$
Set by $f(Q_0^2) = 1$

$$Other parameters$$

$$Q_0: virtuality switch to LBT T_0: start time$$

2204.01163, see also previous talk

Few words on the analysis

Huge effort in computing during 2022

- O(10M) CPU hours, unified submission interface across multiple HPC systems, data curation including all systematic uncertainties, iteration on design points, etc
- Calculated many more observables than are used in this iteration → fast turnaround for next analyses
- Choose dimension of subspace based on statistical uncertainty on the computations

Nominal Results

Example: design vs posterior

Data Calculation

Analysis Data Best Fit

13

Posterior observables

(Don't stare too closely, we have zoomed in version in the next pages)

Overall reasonable agreement is observed

Data

Tension for some measurements

Looking closer — hadrons

Generally great agreement at lower p_T No large difference across experiments

Looking closer — hadrons

Things deviate a bit going to higher p_T Uncertainty smallest at lower $p_T \rightarrow$ drives result

2204.01163

Looking closer — jets

Also generally good agreement

Systematically

slightly lower R_{AA}

Posterior distribution

Anti-correlation between $\alpha_{s,fix}$ and Q switch

Between MATTER and LBT

 $\propto \hat{q}$

Extracted \hat{q}

How can we gain more insight?

\hat{q} : jets vs hadrons

If we do analysis with only jet data

If we do analysis with only hadron data

\hat{q} : jets vs hadrons

Hadrons, high vs low

Full p_T range

Hadrons, high vs low

What's happening?

Low p_T part dominates: small experimental uncertainty High p_T part in line with jet data Points clearly to phase space for model improvement Theory uncertainty is important

Implications

- We can **scrutinize** the specific **model** used in this round of simulations in great detail
 - Low vs high p_T , central vs peripheral, jet vs hadron, different radii jet, and so on
 - Future: more models needed!
- Isolate regions of interest
- Important feedback to models
- Points to interesting question: theory uncertainties?

A way to quantify compatibility

Explore how well model performs with new data

Example: small vs large radii

A: hadron & small jet data B: large jet data

Reasonable agreement

Uncertainty correlation

Concluding remarks

New analysis of \hat{q}

Included jet R_{AA} into the mix! General reasonable description of data

All these impossible without a framework

Endless possibilities

Bayesian analysis: powerful tool for not only parameter extraction but also model studies

Pinpoint interesting phase space in model

Evaluate how well model does in new observables

Theory uncertainties?

(Near-) future prospects

We also calculated huge number of **other jet-related observables**

Move one step at a time and **sequentially include more observables** → stay tuned for many new results in the near future! Plot taken from Y. Go, Mon Mar 27

Important to include ALL eligible data

Ready to explore the theory / experimental landscape

Backup Slides Ahead

Nominal \hat{q}

\hat{q} with hadron $p_T > 30$ GeV

Jet vs hadron vs both

JET collaboration result

Separate analyses to RHIC and LHC data from a variety of models

Taking it one step further

Previous iteration of \hat{q}

$$\frac{\hat{q}}{T^3} \propto A \frac{\ln(E/\Lambda) - \ln(B)}{\ln^2(E/\Lambda)} + C \frac{\ln(E/T) - \ln(D)}{\ln^2(ET/\Lambda^2)}$$

MATTER-inspired term

LBT-inspired term

 $\ln^2(ET/\Lambda^2)$

Phys. Rev. C 104, 024905 (2021)

Previous iteration of \hat{q}

Previous iteration of \hat{q}

Compatible with JET collaboration results

Prior range >> posterior range

Phys. Rev. C 104, 024905 (2021)

Effect of $f(Q^2)$

• Type-1: HTL
$$\hat{q}$$
 with fixed coupling (applies for any Q^2),
 $\hat{q} \equiv \hat{q}_{HTL}^{Rx} = C_a \frac{50.484}{\pi} \alpha_s^{fix} \alpha_s^{fix} T^3 \ln \left[\frac{2ET}{m_D^2}\right]$, (24)
where $m_D^2 = 6\pi T^2 \alpha_s^{fix}$ is the Debye mass for $N_f = 3$
flavors.
• Type-2: HTL \hat{q} with running coupling (applies for any Q^2),
 $\hat{q} \equiv \hat{q}_{HTL}^{run} = C_a \frac{50.484}{\pi} \alpha_s^{run} (Q_{max}^2) \alpha_s^{fix} T^3 \ln \left[\frac{2ET}{m_D^2}\right]$, (25)
where $Q_{max}^2 = 2ET$
• Type-3: HTL \hat{q} with a virtuality (Q^2) dependence factor
 $\hat{q} \cdot f \equiv \hat{q}_{HTL}^{run} f(Q^2)$ (26)
 $f(Q^2) = \begin{cases} \frac{1+10\ln^2(Q_{xw}^2)+100\ln^4(Q_{xw}^2)}{1} Q^2 \leq Q_{xw}^2}, (27) \\ 1 Q^2 \leq Q^2 \leq Q_{xw}^2, (27) \end{cases}$, (25)
Reduction of \hat{q}_{eff} when Q^2 is large

Linear scale

Zoom in $c_{1,2,3}$

 $f(Q^2)$

