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Conceptual picture of jets
3
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What do we want? 
3

• Quantify the phenomenological structure of splittings or branchings within the jet 
clustering tree 


• Identify a method by which we can quantify the transition from pQCD-like behavior 
to dominance of npQCD effects - O(1) effects from Alba Ontoso’s plenary talk
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Splittings in theory
5

• Two fundamental scales 
involved in jet evolution -  
opening angle and energy 


• Narrow emissions occur at 
later times 


• Early time emissions 
correspond to wider angle 


• At fixed emission energy - 
angle of emission determines 
the time scale!
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How do we know this is true?
6

Rjet
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Larkowski, et al. 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First SoftDrop splittings can be described by pQCD
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We know it has to break!
7

• Flat  distribution and smaller 
 for the third split, where 

we observe collinear emissions  


• At some point within the 
clustering tree (directly 
observed at RHIC, but will also 
be true at the LHC), we need to 
move away from pQCD


• When is that?

zg
⟨Rg⟩

See talk by Monika Robotkova, 
thursday 
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Another evidence for transition 8

• Transition indicated as a 
function of the opening 
angle - which we know is 
related to the time scale!

See talk by Andrew Tamis, wednesday 

See talk by Reynier Cruz-Torres, Tuesday 
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QCD inspired formation time for any two objects to be treated independently

What is the formation time?
9

τf =
1

z ⋅ (1 − z) ⋅ θ2 ⋅ E
[fm/c]

Apolinario et al.  
Eur. Phys. J. C 81 (2021) 6, 

561

z =
min(pT,1, pT,2)

pT,1 + pT,2 θ = ΔR(1,2)
E = E1 + E2

Chien et. al. 
2109.15318 

1

2

https://arxiv.org/pdf/2109.15318.pdf
https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8
https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8
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How to think about the time observable
10

Large mass - early time - larger opening angle - large virtuality 
Allows a selection of jets based on space-time structure
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Lets identify splittings within jets
11
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•Recent studies also show its usefulness 
from the theoretical POV on isolating 
regions where calculations are valid


•Fuzzy area, but overall one can separate 
out ‘mostly’ perturbative and ‘mostly’ 
non-perturbative regions based on 
formation time

Why look at the formation time  
and charged particles 

12

Y-T Chien, A Deshpande, M Mondal, G Sterman  
arXiv: 2109.15318 
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Start with the formation times
13

• 1SD splittings are predominantly 
early time and do not follow the 
shape the LCP


• RSD shows the characteristic 
shape at early time and follows 
the LCP at later times 

τf [fm/c]
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τf [fm/c]

• 1SD splittings are predominantly 
early time and do not follow the 
shape the LCP


• RSD shows the characteristic 
shape at early time and follows 
the LCP at later times 
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Motivation
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Splittings

ConclusionsnpQCD-ish
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• We would nominally expect 
the following ordering   
1SD -> RSD -> LCP


• 1SD is a steeply falling 
distribution reminiscent of 
DGLAP leading order 


• LCP is significantly peaked 
at larger values 


• RSD is somewhere in the 
middle

Lets quantify the splitting shapes
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zg

• Multi-parameter simultaneous fit converges for 
when RSD = 1SD - with unreasonable weights! 
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17

zg• RSD = 2SD, split DOES NOT converge!  
Shape of this  is definitely not perturbativezg
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Conclusions 19

• Associating a timescale to jet 
evolution via the formation time 
highlights its usefulness from very 
early time pQCD dynamics to late time 
npQCD mechanics and hadronization

• Resolved splittings potentially 
straddles the transition regime - 
leading charged particle selection will 
make this free of background 
contribution in heavy ions!

zg
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Bonus Slides
24
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Extending towards correlations
25

Apolinario, RKE, Madureira,  
in preparation

• One example of ongoing studies with charged correlation - Like-sign leading particles 


• Significant split in the formation times for 3rd particle to be opposite sign  - quantitative categorizing 
of charge conservation in jets vs time


• Emerging as a new avenue thats complementary to jet substructure focused on understanding 
hadronization mechanisms 
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Already followed up in experiment 
26
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• Similar structure - will be very 
exciting to see this at the LHC
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At the LHC
27

• Selecting on the formation time - sculpts your 
mass distribution 


• Later time is almost exclusively larger mass - 
allows for selecting early time dynamics  


