Novel measurements of dijet quenching with ATLAS

Martin Krivoš on behalf of ATLAS collaboration

CHARLES UNIVERSITY Faculty of mathematics and physics

Hard Probes 2023 Aschaffenburg

Dijet measurement

- Dijets can provide more information than inclusive jets
- Put more constraints on path-length dependence
- More sensitive to fluctuations in the energy loss

Observables

Observables

arXiv: 2205.00682

Observables

arXiv: 2205.00682

Dijet momentum balance distribution

Absolutely normalized

• While per-pair normalized will allow us to compare shapes between the centralities, the absolute normalization will give the absolute yields.

Per-pair normalized x₁

- Significant modification in Pb+Pb collisions •
- compared to *pp* in all $p_{T,1}$ intervals The distribution is peaked at $x_J \sim 0.6$ in the ۲ lowest $p_{T,1}$

Per-pair normalized x_J

- Significant modification in Pb+Pb collisions compared to pp in all p_{T,1} intervals
- The distribution is peaked at $x_{\rm J} \sim 0.6$ in the lowest $p_{\rm T,1}$

- *pp* collisions have a sharper maximum at x₁=1
- The difference between Pb+Pb and pp distributions decreases with increasing $p_{T,1}$.

Per-pair normalized x₁ - model predictions

- LIDO predictions:
 - Reproduces the behaviour at high $p_{T,1}$ and in 40-60% centrality intervals

Per-pair normalized x_J - model predictions

- LIDO predictions:
 - \circ Reproduces the behaviour at high $p_{T,1}$ and in 40-60% centrality intervals
 - Does not reproduce well the relative enhancement in 0-10%

arXiv: 2205.00682

Absolutely normalized x_J

- Peak-like structure may falsely suggest the enhancement of production of imbalanced jets
- Absolutely normalized x_J show that balanced jets are more suppressed compared to imbalanced ones
- Smooth centrality evolution

How will this change in a different system?

ATLAS-CONF-2018-007

11 11

Xe+Xe

How will this change in a different system?

ATLAS-CONF-2018-007

The x_J distributions in Xe+Xe

Per-pair normalized

- Substantial difference between central and peripheral collisions
- Peak-like structure from Pb+Pb is not observed (smaller nuclear overlap)
- Not as pronounced differences as in Pb+Pb

The x_J distributions in Xe+Xe

Per-pair normalized

- Substantial difference between central and peripheral collisions
- Peak-like structure from Pb+Pb is not observed (smaller nuclear overlap)
- Not as pronounced differences as in Pb+Pb

Absolutely normalized

- As in Pb+Pb, a depletion of balanced jets is observed
- Clear centrality evolution

 When ΣE_T^{FCal} intervals from Xe+Xe are matched to Pb+Pb, the distributions are consistent between Pb+Pb and Xe+Xe

N_{evt}

¥

A larger absolute dijet yield is seen in Xe+Xe collisions compared to Pb+Pb collisions

0.4

This may be in part due to difference in the CME affecting the hard partonic cross-section

0.5

0.6

0.7

0.8

0.9

х.,

- A larger absolute dijet yield is seen in Xe+Xe collisions compared to Pb+Pb collisions
- This may be in part due to difference in the CME affecting the hard partonic cross-section
- Correction factor introduced to correct for the difference in the CME:

$$C(p_{T,1}) = \frac{p p}{p} | 5.44 \text{ TeV}, \text{ MC PYTHIA} | 5.02 \text{ T$$

Corrected for CME

No CME correction

Good agreement after scaling

Pair R_{AA}

- The $(p_{T,1}, p_{T,2})$ distribution is projected to $p_{T,1}$ and $p_{T,2}$ axes to get leading and sub-leading jet yields, respectively.
- These can then be used to construct pair nuclear modification factor.

Pair R_{AA}

- The (p_{T,1},p_{T,2}) distribution is projected to p_{T,1} and p_{T,2} axes to get leading and sub-leading jet yields, respectively.
- These can then be used to construct pair nuclear modification factor.

Pair R_{AA}

- The (p_{T,1},p_{T,2}) distribution is projected to p_{T,1} and p_{T,2} axes to get leading and sub-leading jet yields, respectively.
- These can then be used to construct pair nuclear modification factor.

Pair R_{AA} Pb+Pb

- Both, leading and subleading jets show significant suppression
- LIDO reproduces the data better for

$$\mu_{min} = 1.8$$

Pair R_{AA} Pb+Pb

- Both, leading and subleading jets show significant suppression
- LIDO reproduces the data better for $\mu_{\min} = 1.8$

Centrality [%]

- Subleading jets are more suppressed than leading jets
- The difference in the suppression is the most significant in the most central collisions

Pair R_{AA} Xe+Xe

Conclusions

- Imbalanced dijets are more probable configuration than balanced ones in both Pb+Pb and Xe+Xe collisions
- Xe+Xe and Pb+Pb dijet yields are consistent with each other when compared in the same activity intervals and after correcting for the difference in the CME between Pb+Pb and Xe+Xe

