Recoil-free jet observable in heavy ion collisions

Bin Wu

March 28, 2023

Hard Probes 2023, Aschaffenburg, Germany

In collaboration with Y. T. Chien, R. Rahn, D. Y. Shao, W. J. Waalewijn

Financiado por la Unión Europea NextGenerationEU

Motivations

\hat{q} and its conventional measurement

\hat{q} determines both $\langle p_{\perp}^2 \rangle$ and energy loss:

Jet quenching parameter \hat{q}

$$rac{d}{dL}\langle p_{\perp}^2
angle = \hat{q}$$

L: the path length

 \perp : the direction transverse to the (initial) jet direction.

Medium-induced energy loss

$$\frac{d}{dL}\Delta E = \frac{\alpha_s N_c}{6} \hat{q}L = \frac{\alpha_s N_c}{6} \langle p_{\perp}^2 \rangle.$$

Baier, Dokshitzer, Mueller, Peigne and Schiff, Nucl. Phys. B 484, 265-282 (1997) [arXiv:hep-ph/9608322 [hep-ph]].

\hat{q} in AA collisions is mostly measured via jet quenching phenomena.

$$\hat{q} = (2-4)T^3$$

S. Cao et al. [JETSCAPE], Phys. Rev. C 104, no.2, 024905 (2021) [arXiv:2102.11337 [nucl-th]].

Bin Wu

Boson-jet azimuthal decorrelation

Definition: $\Delta \phi \equiv |\phi_V - \phi_J| \ (\delta \phi \equiv \pi - \Delta \phi)$

A. M. Sirunyan et al. [CMS], Phys. Rev. Lett. 119, no.8, 082301 (2017) [arXiv:1702.01060 [nucl-ex]].

At lowest order, $d\sigma/d\delta\phi \propto \delta(\delta\phi)$ when terms of $O(\Lambda_{QCD}/p_T)$ is neglected!

This observable is directed related to $\langle p_{\perp}^2 \rangle$ in AA collisions!

Bin Wu

Provide an alternative to measure \hat{q}

Using $\Delta \phi$ in dijets: $\delta \phi \sim \frac{\sqrt{\delta L}}{PT_{eff}}$ (in a static medium)

A. H. Mueller, BW, B. W. Xiao and F. Yuan, Phys. Lett. B 763, 208-212 (2016) [arXiv:1604.04250 [hep-ph]]. .

Using $\Delta \phi$ in boson-jet:

 $\hat{q}_0 = (4-8) \text{ GeV}^2/\text{fm}$ for $T_0 = 509 \text{ MeV}$ at $\sqrt{s_{NN}} = 5.02 \text{ TeV}.$

L. Chen, S. Y. Wei and H. Z. Zhang, PoS HardProbes2020, 031 (2021).

Can we provide more precise calculations?

Bin Wu

3/20

Ingredients for precise calculations

N. Armesto, C. A. Salgado, F. Cougoulic and BW, work in progress.

Assuming below bulk matter only modifies the final-state distribution:

- 1. High precision calculations in vacuum radiation (pp collisions)
- 2. Interplay of vacuum and medium-induced radiation

We will see the recoil-free jet definition facilitates this task!

Bin Wu

What is a recoil-free jet definition?

A recombination scheme \Rightarrow the momentum of two combined particles $i, j \rightarrow p_T^n$ recombination scheme for n > 1

$$p_{T,r} = p_{T,i} + p_{T,j}, \phi_r = (p_{T,i}^n \phi_i + p_{T,j}^n \phi_j) / (p_{T,i}^n + p_{T,j}^n), y_r = (p_{T,i}^n y_i + p_{T,j}^n y_j) / (p_{T,i}^n + p_{T,j}^n)$$

M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012) [arXiv:1111.6097 [hep-ph]]. .

In the limit $n \to \infty$, one has

▶ Winner-Take-All (WTA)-*p*_T scheme:

$$p_{T,r} = p_{T,i} + p_{T,j}, \qquad (y_r, \phi_r) = (y, \phi) \text{ of larger } p_T$$

Salam, " E_t^{∞} Scheme." unpublished; Bertolini, Chan and Thaler, JHEP 04, 013 (2014) [arXiv:1310.7584 [hep-ph]]. For comparison: $p^{\mu} = p_i^{\mu} + p_i^{\mu}$ for SJA.

Jet definition: a jet algorithm, e.g., anti- k_t with p_T^n scheme

Below take for example the WTA: anti- k_t with WTA- p_T scheme

Bin Wu

5/20

Why WTA (in pp collisions)?

Very robust to hadronization and the underlying event

Chien, Rahn, Shao, Waalewijn and BW, JHEP 02, 256 (2023) [arXiv:2205.05104 [hep-ph]].

Bin Wu

6/20

Why WTA (in pp collisions)?

Very robust to jet definition with all or charged only hadrons:

In experiments (track-based measurements):

Limitation of (calorimeter) jet measurements:

granularity ~ 0.1 rad $\approx 6^{\circ}$

LHC trackers have superior angular resolution

e.g., CMS layer 1 at r=4.4 cm with resolution 23 $\mu m \Rightarrow \delta \phi \sim 5 \times ~10^{-4}$ rad

Naturally robust to pile-up

Pythia simulations: using tracks has a minimal effect on $\Delta \phi$ distribution!

Track-based jets: a means to access the resummation region!

Chien, Rahn, Shao, Waalewijn and BW, JHEP 02, 256 (2023) [arXiv:2205.05104 [hep-ph]].

Bin Wu

7/20

Precision calculations in pp collisions

Fixed-order calculations fail at small $\delta\phi$

Here, $q_T = |\vec{p}_J + \vec{p}_V| \approx p_T \delta \phi$

Data is taken from A. M. Sirunyan et al. [CMS], Eur. Phys. J. C 78, no.11, 965 (2018) [arXiv:1804.05252 [hep-ex]].

There are (Sudakov) logs in p_T/q_T along the beam and jet directions.

Bin Wu

8/20

Resummation of large logarithms

Resum logs up to all orders in $O(\alpha_s)$

Bin Wu

NLL resummation

Using Standard Jet Axis (SJA), only NLL resummation has been done

With NGLs: Y. T. Chien, D. Y. Shao and BW, JHEP 11, 025 (2019) [arXiv:1905.01335 [hep-ph]].

See also (without NGLs): P. Sun, B. Yan, C. P. Yuan and F. Yuan, Phys. Rev. D 100, no.5, 054032 (2019) [arXiv:1810.03804 [hep-ph]].

Bin Wu

Uncertainties for NLL resummation

NLL resummation has large uncertainties of $O(\alpha_s)$

Y. T. Chien, D. Y. Shao and BW, JHEP 11, 025 (2019) [arXiv:1905.01335 [hep-ph]].

Note uncertainties for *LL* is even larger $\sim O(lpha_s^0)$

More precision predictions requires going beyond NLL

Bin Wu

11/20

NNLL resummation

The most precise prediction:

NNLL requires a "minor" change: SJA \rightarrow recoil-free jet axis More precise like N³LL resummation is also possible!

Chien, Rahn, Schrijnder van Velzen, Shao, Waalewijn and BW, Phys. Lett. B 815, 136124 (2021) [arXiv:2005.12279 [hep-ph]]. Chien, Rahn, Shao, Waalewijn and BW, JHEP 02, 256 (2023) [arXiv:2205.05104 [hep-ph]].

Bin Wu

12/20

Why WTA again?

No Non-Global Logarithms (NGLs):

The WTA axis eliminates NGLs: insensitive to soft radiation

Definition of NGLs: M. Dasgupta and G. P. Salam, Phys. Lett. B 512, 323-330 (2001) [arXiv:hep-ph/0104277 [hep-ph]].

Resummation of NGLs is difficult and NNLL has NOT be achieved using SJA

Bin Wu

Factorization in pp collisions

Factorization formula, excluding Glauber modes, for recoil-free jets using SCET:

Hard function: $\mathcal{H}_{ij \rightarrow Vk} \leftarrow \text{parton-level } \hat{\sigma}$

Beam functions: $\mathcal{B}_i, \mathcal{B}_j \leftarrow \mathsf{TMDs}$ in hadrons

Soft function: $S_{ijk} \leftarrow$ soft radiation

Jet function: \mathcal{J}_k does NOT contain NGLs!

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\mathsf{X}}\,\mathrm{d}p_{\mathsf{T},\mathsf{V}}\,\mathrm{d}y_{\mathsf{V}}\,\mathrm{d}\eta_{J}} = \int \frac{\mathrm{d}b_{\mathsf{X}}}{2\pi} e^{b_{\mathsf{X}}q_{\mathsf{X}}} \sum_{ijk} \mathcal{H}_{ij\to\mathsf{V}k}(p_{\mathsf{T},\mathsf{V}},y_{\mathsf{V}}-\eta_{J})\mathcal{B}_{i}(x_{a},b_{\mathsf{X}})\mathcal{B}_{j}(x_{b},b_{\mathsf{X}})\mathcal{J}_{k}(b_{\mathsf{X}})\mathcal{S}_{ijk}(b_{\mathsf{X}},\eta_{J})\mathcal{B}_{ij}(x_{a},b_{\mathsf{X}})\mathcal{B}_{ij}(x_{b},b_{\mathsf{X}})\mathcal{B}_{ijk}(b_{\mathsf{X}},\eta_{J})\mathcal{B}_{ijk}(h_{\mathsf{X}},\eta_{J$$

Glauber modes do not spoil factorization up to NNLO!

Resummation via the RG equation: for each function above denoted by F

$$rac{\mathrm{d}}{\mathrm{d}\ln\mu} F(\mu) = \gamma^F F(\mu)$$
 with γ^F anomalous dimension of F

Bin Wu

Most precise prediction at $O(\alpha_s)$

At NNLL + NL0 ($2\rightarrow3$) accuracy

Source of the difference between our prediction and PYTHIA:

Emission of boson off dijets is NOT included in PYTHIA simulations!

Chien, Rahn, Shao, Waalewijn and BW, JHEP 02, 256 (2023) [arXiv:2205.05104 [hep-ph]].

15/20

Vacuum vs medium-induced radiation

Interplay of vacuum and medium-induced radiation

Simulations with JEWEL and Q-PYTHIA:

It looks promising to measure \hat{q} given the small error band in our pp results.

Bin Wu

Contributions from initial states in AA collisions

The impact-parameter dependent cross section in QFT

$$\frac{d\sigma}{d^2\mathbf{b}dO} = \int \prod_f \left[d\mathsf{\Gamma}_{p_f} \right] \delta(O - O(\{p_f\}) \langle \phi_1 \phi_2 | \hat{S}^{\dagger} | \{p_f\} \rangle \langle \{p_f\} | \hat{S} | \phi_1 \phi_2 \rangle$$

where $O(\{p_f\})$ defines an observable $O(=\Delta\phi)$ as a function of $\{p_f\}$.

Expanding at high p_T leads to Thickness Beam function $T(\mathbf{r}, z, \mathbf{x})$:

 $\mathcal{T}(\mathbf{r}, z, \mathbf{x}) \approx$ Fourier Transform of Transverse phase space (TPS) PDF

BW, JHEP 07, 002 (2021) [arXiv:2102.12916 [hep-ph]].

Bin Wu

17/20

(Conjectured) factorization in AA collisions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{x}\,\mathrm{d}p_{\mathcal{T},V}\,\mathrm{d}y_{V}\,\mathrm{d}\eta_{J}\,\mathrm{d}^{2}\mathbf{b}} = \int \mathrm{d}^{2}\mathbf{r} \int \frac{\mathrm{d}x}{2\pi} e^{\mathbf{x}q_{x}} \sum_{ijk} \mathcal{H}_{ij\to Vk}(p_{\mathcal{T},V}, y_{V} - \eta_{J})$$
$$\times \mathcal{T}_{i}(\mathbf{r} - \mathbf{b}, z_{a}, x) \mathcal{T}_{j}(\mathbf{r}, z_{b}, x)$$
$$\times \mathcal{A}_{med} k(\mathbf{r}, \mathbf{b}, x) \mathcal{S}_{med} ik(\mathbf{r}, \mathbf{b}, x, \eta_{J})$$

where

Hard function: $\mathcal{H}_{ij \rightarrow Vk} \leftarrow$ parton-level $\hat{\sigma}$

Thickness beam functions: $T_i, T_j \leftarrow \text{TPS PDFs in nuclei}$

Medium-modified soft function: S_{med,ijk}

Chien, Rahn, Shao, Waalewijn and BW, work in progress.

LL resummation in AA collisions

Factorization at LL in Deep Inelastic Scattering on nuclei:

Mueller, BW, Xiao and Yuan, Phys. Rev. D 95, no.3, 034007 (2017) [arXiv:1608.07339 [hep-ph]].

Medium-induced double log: $\langle p_{\perp}^2 \rangle_{rad} = \frac{\alpha_s N_c}{8\pi} \hat{q} L \log^2 \left(\frac{L}{r_0}\right)^2$ Here r_0 the nucleon size or 1/T (See Weitz's talk for an update near r_0).

In AA using WTA:
$$\Sigma(q_x) = e^{-\frac{\alpha_s}{\pi} \left[(C_i + C_j + C_k) \log^2 \left(\frac{p_T}{q_x} \right) \right] - \frac{q_x^2}{\hat{q}_t L}}$$

where medium-induced double logs are included in \hat{q}_t (for a static medium

Bin Wu

Interplay of vacuum and medium-induced radiation The central problem to be solved:

how to reconcile the RG equation and the time-evolution of jets?

For example, the vacuum logs can be resummed by

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\mathcal{J}(\mu) = \gamma^{J}\mathcal{J}(\mu)$$

Even assuming medium modification comes only after vacuum branching:

Much more complicated than LBT, Hybrid, MARTINI, PyQUEN ...

Bin Wu

20/20

Summary

1. Azimuthal decorrealtion provides an alternative to measure \hat{q}

A test of the classical relation between $\langle p_{\perp}^2 \rangle$ and energy loss

- 2. Using the recoil-free jet definition has the following advantages:
 - Robust to hadronization, underlying event and charged hadrons
 - Amenable to high precision prediction (for pp thus far)
- 3. Interplay of vacuum and medium-induced radiation in AA has been studied:
 - > at LL where vacuum Sudakov and medium-induced double logs factorize
 - by simulations using JEWEL and Q-PYTHIA,
- 4. Resummation and time evolution of jet observables will be reconciled!

Bin Wu

Backup slides

Factorization breaking?

Glauber exchange: instantaneous interaction

Glauber topologies:

Don't spoil factorization up to and including $O(\alpha_s^3)$

Bin Wu

Parton TMD distributions

Linearly-polarized beam functions start to contribute to $\delta \phi$ at NLO/NNLL:

$$\begin{split} B_g^L(x,b_x) &= \frac{d-2}{d-3} \bigg(\frac{1}{d-2} g_T^{\alpha \alpha'} + \frac{b_T^{\alpha} b_T^{\alpha'}}{\vec{b}_T^2} \bigg) B_{\alpha \alpha'}(x,b_x) \\ &= \mathcal{O}(\alpha_s), \end{split}$$

where

$$\mathcal{B}^{lpha^{\prime}lpha}(x,b_x)\equiv 2xar{n}\cdot P\int rac{dt}{2\pi}e^{-i\xi tar{n}\cdot p}\langle P|\mathcal{B}^{alpha^{\prime}}_{n\perp}(tar{n}+b_x)\mathcal{B}^{alpha}_{n\perp}(0)|P
angle$$

with

$$\mathcal{B}_n^{lpha} = rac{1}{ar{n}\cdot\mathcal{P}}W_n^{\dagger}iar{n}_{
u}F^{
u\mu}W_n$$

They contribute to Higgs production starting only at NNLO!

Gutierrez-Reyes, Leal-Gomez, Scimemi and Vladimirov, JHEP 11, 121 (2019) [arXiv:1907.03780 [hep-ph]].

Bin Wu

TMD in jets

TMD jet function: offset of the WTA axis w.r.t SJA

Gutierrez-Reyes, Scimemi, Waalewijn and Zoppi, Phys. Rev. Lett. 121, 162001 (2018).

Linearly-polarized TMD jet function starts to contribute

$$\begin{split} \partial_g^T &= \frac{-g_{\perp}^{\mu\nu}}{d-2} \partial_{g\mu\nu} = 1 + \mathcal{O}(\alpha_s), \\ \partial_g^L &= \frac{1}{(d-2)(d-3)} \left[g_{\perp}^{\alpha' j \alpha J} + (d-2) \frac{b_{\perp}^{\alpha' j} b_{\perp}^{\alpha} J}{\tilde{r}_{\perp}^2} \right] \partial_{g\mu\nu} \\ &= \frac{\alpha_s}{4\pi} \left(-\frac{1}{3} C_A + \frac{2}{3} T_F n_f \right) + O(\alpha_s^2) \end{split}$$

with

$$\begin{split} \partial_{g}^{\mu\nu} &= \frac{2(2\pi)^{d-1}}{N_{c}^{2}-1} \,\bar{n} \cdot \rho_{J} \langle 0 | \mathcal{B}_{n\perp}^{a\mu}(0) e^{\delta_{X} b_{X}} \,\delta(\bar{n} \cdot \rho_{J} - \bar{n} \cdot \rho_{c}) \delta^{(d-2)}(\bar{\rho}_{\perp,c}) \mathcal{B}_{n\perp}^{a\nu}(0) | 0 \rangle \\ \text{and} \,\delta_{X} &\equiv \rho_{X,c} - \rho_{X,J}. \end{split}$$

TMD in jets contributes to $\delta \phi$ using WTA!

Chien, Rahn, Schrijnder van Velzen, Shao, Waalewijn and BW, Phys. Lett. B 815, 136124 (2021) [arXiv:2005.12279 [hep-ph]].

Chien, Rahn, Shao, Waalewijn and BW, [arXiv:2205.05104 [hep-ph]].

Bin Wu

SJA

WTA

Matching: emission of boson off dijets

For $p_{T,J} \gg m_V$: Large contribution for $\delta \phi \gtrsim m_V / p_{T,J}$

For $p_{T,J} \ll m_V$: finite corrections independent of $\delta \phi$

Matching to the fixed-order cross section

The $O(\alpha_s)$ formula for a wide range of $\Delta \phi$:

 $d\sigma(\text{NLO} + \text{NNLL}) = [1 - t(\Delta\phi)] \times (\text{NNLL} + \text{nonsingular part of NLO}) + t(\Delta\phi) \times (\text{NLO})$

where
$$t(\Delta \phi) = \frac{1}{2} - \frac{1}{2} \tanh \left[4 - \frac{240(\pi - \Delta \phi)}{r} \right]$$
 with $r = 20(10)$ for $p_{T,J} > 60(200)$ GeV.

Bin Wu