Intra-jet asymmetry in heavy-ion collisions

Tan Luo

University of Santiago de Compostela

In collaboration with Yayun He, Carlos A. Salgado and Xin-Nian Wang

Jet induced medium response

EPOS3-HQ Iurii Karpenko HP2018

y-jet particle number distribution (CoLBT-hydro)

MPI ridge & diffusion wake valley

3

Separate the contribution of diffusion wake

y-jet particle number distribution (CoLBT-hydro)

Winnowing jets in quark gluon plasma

Jet-flow coupling in heavy-ion collisions

Measuring The Collective Flow With Jets

Néstor Armesto, Carlos A. Salgado and Urs Achim Wiedemann Department of Physics, CERN, Theory Division, CH-1211 Genève 23, Switzerland (Dated: October 8, 2018)

Armesto, Salgado, Wiedemann Phys.Rev.Lett.93:242301,2004

FIG. 2: Jet energy distribution for a sample of jets for which the medium was moving with equal probability in the positive and negative beam direction.

Jet-flow coupling in heavy-ion collisions

8

A Linear Boltzmann Transport (LBT) Model

Parton shower Pythia Sherpa

Jet propagation

 $p_1 \Box \partial f_1(x_1, p_1) = E_1(C_{elastic} + C_{inelastic})$

- Rescattering
 Shower-thermal & recoil-thermal
- Back reaction Track the initial thermal parton

Fragmentation Recombination LBT Hard

Local medium information $\varepsilon T u$

Initial profile AMPT TRENTO

Medium evolution

 $\partial_{\mu}T^{\mu\nu} = 0$

Cooper Frye

l visc

Soft

Hadronic observables

Gradient tomography for jet localization

10

Jet shape within LBT model

Phase-space cut and intra-jet asymmetry

Intra-jet asymmetry increase in AA collisions

Ideal vs viscous

Path length distribution

Jet localization

 A new method to detect the effect of jet-flow coupling in heavy-ion collisions. Intra-jet asymmetry are observed at both the longitudinal and transverse direction.

Outlook

- Asymmetry in jet substructure.
- Measuring flow with jets. (Medium fluctuation, Hadron cascade, Medium-induced splitting)

Asymmetry in jet substructure.

Angle between jet axes

Substructure observable:
$$\Delta R_{axis} = \sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$$
 between two axes

A coupled LBT Hydro (CoLBT-hydro) Model

Parton shower Pythia Sherpa

Jet propagation

 $p_1 \Box \partial f_1(x_1, p_1) = E_1(C_{elastic} + C_{inelastic})$

 Rescattering Shower-thermal & recoil-thermal Parton above Pcut

Fragmentation Recombination LBT Hard

Hadronic observables 🖌

Initial profile AMPT TRENTO

Medium evolution

 $\partial_{\mu}T^{\mu\nu} = j^{\nu}$

- Source term Parton below Pcut
- Negative source Initial thermal parton

Cooper Frye

CLvisc

¹⁹ Soft

Jet propagation in the QGP medium

Jet-medium interaction

- Jet energy loss: Energy propagated outside the jet cone. (Different from parton energy loss)
- Medium response: some medium constituents get excited by the jet.

Leading parton

Medium induced radiation

Recoiled parton (Jet induced mefium excitation)

Initial thermal parton (diffusion wake, negative partons in LBT)

Do we have to look at the large rapidity jets?

