

Ψ(2S) production in Pb-Pb collisions measured by ALICE at the LHC

Victor Feuillard, Heidelberg University, on behalf of the ALICE collaboration

Introduction – The QGP

- Quark-gluon plasma (QGP) is a state of matter predicted by QCD where quark and gluons are deconfined
- Transition temperature : T_C ≈ 157 MeV with zero net baryonic number (Bazavov et al. *Phys. Lett. B 795 (2019) 15–21*)
- It is the state of matter at the early stages of the universe
- It is possible to recreate the QGP by doing relativistic heavyion collisions, but only during a short period of time (≈10 fm/c at LHC) and in a very small volume (≈ 5.10³ fm³ per unity of rapidity at LHC) (ALICE, *Phys.Lett. B696 (2011) 328-337*)

Introduction - Charmonia

- Charmonia $(J/\psi, \psi(2S),...)$ are bound states of a $c \bar{c}$ pair
- Because of the large mass of charm quarks, they are produced in hard collisions, face all the medium evolution and are affected by it

→ Measurement of charmonium production can provide information on the QGP properties

 Theory predicts that charmonia are dissociated in a QGP because of the colour screening and dynamical dissociation → quarkonium suppression

(Matsui & Satz, Phys. Lett. B 178 (1986) 416; Rothkopf, Phys. Rept. 858 (2020) 1-117)

• If there are enough charm-anticharm pairs, and if thermalized in QGP or at hadronisation

→ quarkonium (re)combination

(Braun-Munzinger & Stachel, Phys. Lett. B 490 (2000) 196; Thews, Schroedter, & Rafelski Phys. Rev. C 63 (2001) 054905)

Illustration of a A-A collision

Illustration of colour screening

Introduction - Charmonia

 $\clubsuit\psi(2S)$ is expected to be dissociated at lower temperature in QGP than the J/ ψ

- J/ ψ and $\psi(2S)$ differ by a factor ${\sim}2$ in size (${\sim}0.5$ and ${\sim}0.9$ fm, respectively)

 $\Rightarrow \psi(2S)$ and J/ ψ recombination processes might differ, the larger $\psi(2S)$ being produced later in the evolution of the system

- Studying both J/ ψ and $\psi(2S)$ can provide insightful information to test the recombination models
- Other relevant talks for charmonia in QGP :
 - Pengzhong Lu : <u>Measurements of J/ψ production in Pb–Pb collisions at 5.02 TeV</u> (Tuesday 28th, 11:10)
 - Andrea Ferrero : <u>Quarkonium polarization in pp and Pb–Pb collisions</u> (Thusday 30th, 9:00)
 - Ionut Arsene : <u>J/\u03c6 photoproduction in Pb-Pb collisions with nuclear overlap</u> (Wednesday 29th, 9:00)

Illustration of colour screening affecting J/ ψ and ψ (2S) differently

ALICE apparatus

Illustration of ALICE Detector during Run 2

- Muon Arm : J/ψ , $\psi(2S)$, $\mathbf{Y}(nS) \rightarrow \mu^+\mu^-$
- Acceptance : 2.5<y<4.0
- Down to $p_{\rm T} = 0$
- Inclusive charmonia only
- 5 stations of tracking chambers
- 2 stations of trigger chambers
- Dipole Magnet
- Absorbers
- ITS used for vertex determination
- V0 hodoscopes used as trigger (in coincidence with Muon Trigger)
- V0 also used for centrality determination
- V0 and ZDC used for background rejection

Aschaffenburg

New $\psi(2S)$ measurements in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

Signal extraction procedure

- Data collected in 2015 and 2018, corresponding to an integrated luminosity of $L_{int} \sim 750 \ \mu b^{-1}$
- $\psi(2S)$ yield extracted by χ^2 minimization fits to the opposite sign dimuon invariant mass spectrum

- For the whole dataset, $N_{\psi(2S)}\approx 1.3$ $.10^4$ and $N_{J/\psi}\approx 9.2$ $.10^5$

- pp data collected in 2017, for a total luminosity $L_{int} \sim 1230 \text{ nb}^{-1}$
- Integrated cross section ($p_T < 12 \text{ GeV}/c$) : $\sigma_{\psi(2S)}^{pp} = 0.87 \pm 0.06 \text{ (stat)} \pm 0.10 \text{ (syst)} \mu b$ (ALICE, *Eur. Phys. J. C 83 (2023) 1, 61*)

 R_{AA} vs centrality

arXiv:2210.08893v2

- Nuclear modification factor : $R_{AA} = \frac{dN_{PbPb}}{\langle T_{AA} \rangle \cdot d\sigma_{pp}}$
- If R_{AA} ≠ 1, then initial and/or final state effects are present
- A larger suppression of the ψ(2S) with respect to the J/ψ is observed
- No centrality dependence is observed for the $\psi(2S) R_{AA}$ within uncertainties

30/03/2023

$R_{\Delta\Delta}$ vs centrality

arXiv:2210.08893v2

Statistical Hadronization Model (SHMc) : (Andronic et al., *Phys. Lett. B797 (2019) 134836*)

- No binding of charmonia in the QGP phase
- Charmonium production occurs at phase boundary by the statistical hadronization of charm quarks

Transport Model (TAMU): (Du and Rapp, Nucl. Phys. A 943 (2015) 147-158)

- Continuous charmonium dissociation and regeneration in the QGP, described by a rate equation
- TAMU shows a good agreement with the R_{AA} for both J/ ψ and ψ (2S), within uncertainties
- The SHMc model reproduces the J/ ψ R_{AA} centrality dependence within uncertainties ٠
- It underestimates the $\psi(2S)$ one in central collisions.

- The $\psi(2S) R_{AA}$ increases at low p_T , similarly to the J/ ψ one
- Results are compatible with CMS measurements in the common p_T region (but different y coverage) (<u>CMS, Eur. Phys. J. C 78 no. 6 (2018) 509</u>)
- The strong suppression of the $\psi(2S)$ persists up to $p_T = 30 \text{ GeV}/c$

- The ψ(2S) R_{AA} increases at low p_T, similarly to the J/ψ one
- Results are compatible with CMS measurements in the common p_T region (but different y coverage) (CMS, Eur. Phys. J. C 78 no. 6 (2018) 509)
- The strong suppression of the $\psi(2S)$ persists up to $p_T = 30 \text{ GeV}/c$
- TAMU model is able to reproduce the p_T dependence of the R_{AA} for both J/ ψ and ψ (2S)

→ Results agree with models including recombination of $c - \overline{c}$ quarks

Single and double ratio vs centrality

- Single Ratio: $\sigma_{\psi(2S)}^{PbPb}/\sigma_{J/\psi}^{PbPb}$
- All uncertainties except the one on signal extraction cancel out
- The ratio of $\psi(\text{2S})$ and J/ ψ cross sections shows no significant centrality dependence
- The TAMU model reproduces the cross-section ratios over centrality
- The SHMc model tends to underestimate the data in central Pb–Pb collisions
- NA50 results reach smaller ψ(2S)-to-J/ψ single and double ratios values for central events
- The double ratio shows that the $\psi(2S)$ suppression in Pb–Pb w.r.t pp is larger than the J/ ψ one by a factor ${\sim}2$

ALI-PUB-528408

Single and double ratio vs p_{T}

- Both the Pb–Pb and pp $\psi(2S)$ -to-J/ ψ ratios increase as a function of p_T
- The Pb–Pb ratio tends to show a milder rise as a function of p_T than the pp one
- The double ratio values tend to decrease with $p_{\rm T}$, down to a value of ~0.5, indicating a corresponding possible increase of the relative suppression of the $\psi(2S)$

Conclusions

- The inclusive nuclear modification factor of the ψ(2S) in Pb-Pb collisions at Vs_{NN} = 5.02 TeV and forward rapidity has been measured down to p_T = 0
 → See <u>arXiv:2210.08893v2</u> for the publication
- The centrality and p_T dependence of the R_{AA} have been studied and show :
 - No centrality dependence of the $\psi(2S) R_{AA}$ within uncertainties
 - An increase of the $\psi(2S)$ suppression at high p_T with respect to low p_T , similar to the J/ ψ one
- The (double) ratio of $\psi(2S)$ and J/ ψ cross sections show :
 - A relative suppression by a factor ${\sim}2$ of the $\psi(2S)$ with respect to the J/ψ
 - No centrality dependence within the uncertainties, hint of a decrease of the double ratio with increasing p_{T}
- These results show a fair agreement with Transport Model and SHMc calculations, both including J/ ψ and ψ (2S) regeneration
- TAMU model calculations are better able to reproduce the $\psi(2S)$ results in central collisions

Perspectives

- Run 3 at the LHC is ongoing :
 - pp collisions being recorded at this moment
 - Pb-Pb collisions scheduled for the end of the year
- The new Muon Forward Tracker (MFT) installed allows now to distinguish between prompt and non-prompt charmonia at forward rapidity
- New exciting results coming soon!

ALICE event display of a Pb-Pb collision during Run 3

THANK YOU FOR YOUR ATTENTION!

Questions?

- Single Ratio: $\sigma_{\psi(2S)}^{PbPb}/\sigma_{J/\psi}^{PbPb}$
- The previous published ALICE result at $\sqrt{s_{\rm NN}} = 2.76$ TeV does not allow any firm conclusion, due to the large uncertainties (ALICE, JHEP 05 (2016) 179; NA50, Eur. Phys. J. C49 (2007) 559–567)
- With the data collected in Run 2 at $\sqrt{s_{\rm NN}}=5.02$ TeV, a significant improvement on the $\psi(\rm 2S)$ measurement is possible

Event and Track Selection

- Results from Run 2, 2015 + 2018 combined
- Integrated Luminosity \approx 750 µb⁻¹
- Muon pair selection :
 - Pseudo rapidity on each muon -4.0<η<-2.5
 - Radial transverse position at the end of the absorber $17.6 < R_{abs} < 89.5 cm$
 - Rapidity of the dimuon 2.5<y<4.0
 - Muons of opposite sign
 - Matching tracks between tracking chambers and trigger
- Event selection
 - Beam gas and electromagnetic interactions rejected using V0 and ZDC
 - SPD used for vertex determination
- Centrality estimated on a Glauber model fit of the V0 amplitude (PRL. 116 (2016) 222302)

ALICE, ALICE-PUBLIC-2015-008

- $\psi(2S)$ yield extracted by χ^2 minimization fits the opposite sign dimuon invariant mass spectrum using :
 - 2 signal functions
 - Several line shapes are used for the signal functions
 - Combinatorial Background substracted with mixed-event technique
 - Remaining background fitted with several empirical functions
 - The mass of the $\psi(2S)$ is fixed to the one of the J/ ψ via the mass difference of the two resonances as provided by the Particle Data Group
 - Several fit ranges

- $N_{\psi(2S)}$: number of $\psi(2S)$
- A ϵ : Acceptance-efficiency, correcting the number of extracted particles by the acceptance and efficiency of the detector, calculated with Monte-Carlo simulations using the embedding technique
- $BR_{\psi(2S) \rightarrow \mu\mu}$: Branching ratio
- N_{MB}: Number of equivalent minimum bias events
- $\langle T_{AA} \rangle$: Nuclear overlap function, calculated using a Glauber model
- $\sigma^{pp}_{\psi(2S)}$: pp cross section at $\sqrt{s} = 5.02$ TeV (<u>ALICE, *Eur. Phys. J. C 83 (2023) 1, 61</u>*)</u>

 \Rightarrow Each one of these elements is a source of systematic uncertainty. For the $\psi(2S)$ -to-J/ ψ single ratio all uncertainties except the one on signal extraction cancel each other out

 Values with an asterisk correspond to the systematic uncertainties correlated as a function of the given variable

	Vs centrality (%)	Vs <i>p</i> _T (%)
Signal extraction	16-22	12-25
Tracking efficiency	3*	3
Trigger efficiency	1.6*	1.5-2
Matching efficienty	1*	1
MC input	2*	2
Normalization factor	0.7*	0.7*
$\langle T_{AA} \rangle$	0.7-2.3	1*
Centrality estimation	0-7	0.3*
pp reference	4.7*	7.9-11.1