

Multiplicity dependence of quarkonium production in small systems with ALICE

Ailec de la Caridad Bell Hechavarria for the ALICE Collaboration

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster

29.03.2023

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 26-31 March 2023, Aschaffenburg

General motivation

Studying QGP through high energy-heavy ions collisions (Pb–Pb, Xe–Xe)

ALICE experiment at the LHC is dedicated to study the physics of high-energy heavy ions collisions

collision systems:

- Pb–Pb at 2.76, 5.02 TeV
- p–Pb at 5.02, 8.16 TeV
- pp up to 13.6 TeV

Quarkonium

Quarkonia are bound states of a heavy quark and its antiquark

ALICE Collaboration, arXiv:2211.04384 [nucl-ex]

Quarkonium production involves:

- hard scale processes: heavy quarks are produced at the early stages of a collision via partonic scattering processes with high momentum transfer
- soft scale processes: subsequent binding of the pair into a colorless final state

Production rates sensitive to Parton Distribution Functions (PDF) of the incoming protons or nuclei

ALICE Detector (Run 2)

Small collision systems (pp and pPb)

• $p-Pb \Rightarrow$ to evaluate nuclear matter effects in the absence of QGP formation

ALICE Collaboration, arXiv:2211.15326 [nucl-ex]

Need for characterization of the initial state and the mechanisms that could contribute to High Multiplicity events

Excited quarkonia states ($\psi(2S)$, $\Upsilon(nS)$):

- More suppressed than their tighter ground states $(J/\psi \text{ and } \Upsilon(1S)) \Rightarrow$ behavior not explained with only initial state effects
- Less bound and therefore more sensitive to final-state interactions

Quarkonium vs. multiplicity

Correlation between the production of hard components (N_Q) and the underlying events (N_{ch}) in a collision

Key observable to disentangle initial and final state effects affecting particle production

Results on J/ψ vs. multiplicity in pp

ALICE Collaboration, JHEP 06 (2022) 015

- Good agreement at 13 TeV provided by the Coherent Particle Production (CPP), and the 3-Pomeron Color Glass Condensate models in both rapidity intervals.
- Almost linear growing at midrapidity J/ψ .
- Stronger than linear growing at midrapidity is well reproduced by all the models although the exact origin is not completely understood yet. Previous observations exclude autocorrelations effects.

Hard Probes (2023)

Results on $\psi(2S)$ vs. multiplicity in pp

ALICE Collaboration, arXiv:2204.10253 [nucl-ex]

- Linear correlation between the self-normalized $\psi(2S)$ yield and the charged particle multiplicity.
- Within uncertainties the excited-to-ground state ratio is consistent with unity.
- Qualitatively good description provided by PYTHIA 8.2 with and without color-reconnection.

Results on $\Upsilon(nS)$ vs. multiplicity in pp

- Linear trend for the $\Upsilon(nS)$ state vs. multiplicity at forward rapidity.
- Theoretical predictions describe the experimental observations, although for the excited states, current statistical uncertainties do not allow firm conclusions.

Results on $\Upsilon(nS)$ vs. multiplicity in pp

ALICE Collaboration, arXiv:2204.10253 [nucl-ex]

- Within uncertainties the excited-to-ground state ratios in the in the bottomonium sector are consistent with unity.
- Either none or weak dependence of the measured correlation with the binding energy of the state.
- Current measurements uncertainties do not allow to disentangle any final state effects.

${\rm J}/\psi$ fragmentation function in pp collisions at 13 TeV using the TRD

• Interplay of J/ψ with the underlying event

Ailec Bell

${\sf J}/\psi$ fragmentation function in pp collisions at 13 TeV using the TRD

Ongoing studies in pp collisions at 13 TeV

Ailec Bell

Hard Probes (2023)

Results on J/ψ vs. multiplicity in pPb

ALICE Collaboration, JHEP 2009 (2020) 162

- Normalized J/ψ yield increases with multiplicity in both rapidity intervals.
- At backward rapidity (Pb-going) the correlation is stronger than linear at higher multiplicities.

Results on J/ψ vs. multiplicity in pPb

ALICE Collaboration, JHEP 2009 (2020) 162

- Normalized J/ψ yield increases with multiplicity in both rapidity intervals.
- At backward rapidity (Pb-going) the correlation is stronger than linear at higher multiplicities.
- According to a 2-body calculation for $p_{\rm T} = 0$, the forward (p-going) and the backward rapidity regions probes:
 - at forward rapidity \Rightarrow the Pb nucleus low Bjorken-x regime ($x_{Pb} \sim 10^{-5}$)
 - at backwards rapidity \Rightarrow higher sensitivity to intermediate-to-large values ($x_{Pb} \sim 10^{-2}$)

which could explain the differences observed at high multiplicity.

• EPOS 3 event generator without hydrodynamic expansion is in good agreement with the data suggesting J/ψ production from an incoherent superposition of parton-parton collisions.

Results on $\psi(2S)$ vs. multiplicity in pPb

ALICE Collaboration, arXiv:2204.10253 [nucl-ex]

- Nearly linear increase of the $\psi(2S)$ selfnormalized yield with multiplicity.
- Calculations by EPS09 coupled with the Percolation and Comovers models are describing within uncertainties the observed results.
- Similar trend of the measurements for J/ψ and $\psi(2S)$.

Conclusions

- Small collisions systems are a playground to study the baseline of quarkonium production mechanism.
- Measurements of the correlation between quarkonium production and the charged particle multiplicity are key observables to disentangle the role of initial and final states in particle production.
- Several models are trying to provide a theoretical scenario to describe quarkonium and particle production:
 - ▶ Event generators like PYTHIA and EPOS ⇒ combination of initial and final state effects
 - CGC and CPP \Rightarrow initial state effects
 - Percolation or Comovers \Rightarrow final state effects
- From the comparison with the models:
 - Need for multiparton interactions (MPI) to describe the measurements.
 - ▶ Quarkonium production vs. multiplicity seems to be better known and reproduced by models in p-Pb than in pp.

Backup

ALICE collaboration, Phys.Lett.B 810 (2020) 135758

Hard Probes (2023)