

Zvi Citron for ATLAS

What Do We Know about Upsilon Production

and collectivity at the LHC?

- From a heavy-ion perspective Y(nS) states could be a "thermometer" for a QGP
- Different prompt fraction, regeneration compared to charmonia states
- So let's measure in Pb+Pb vs pp

Upsilon Mesons in 5.02 TeV Pb+Pb & pp

arXiv:2205.03042

• Nuclear Modification $R_{AA} = \frac{N_{Y;AA}}{\langle T_{AA} \rangle \times \sigma^{pp \to Y}}$

- Centrality and species dependent trends as expected
 - Minimal p_T dependence

Upsilon Mesons in 5.02 TeV Pb+Pb & pp

Ben-Gurion University of the Negev

Comparison with Models

arXiv:2205.03042

- Different approaches to explain the suppression
- All invoke deconfinement
 - Brambilla NRQCD: two transport coefficients
 - Du kinetic rate equation
 - Yao coupled HF transport in QGP
- All agree well with data ...

Comparison with Models

arXiv:2205.03042

- Different approaches to explain the suppression
- All invoke deconfinement
 - Brambilla NRQCD: two transport coefficients
 - Du kinetic rate equation
 - Yao coupled HF transport in QGP
- All agree well with data ...

CMS Measurement of Y(nS) and pp Multiplicity

- CMS results all the way back in 2014 show a decrease in excited Y states compared to the ground state vs pp multiplicity
- (More detailed measurements in 2020)
- Let's make a detailed study of **Upsilon production and** inclusive tracks

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

14

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS Measurement of Y(nS) and UE ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

• Shift in UE multiplicity across different excitation states can be understood as suppression of excited states at higher multiplicity

Is there Y(nS) Suppression in pp Collisions?

- As event multiplicity (should be UE) grows larger, excited Y states are, compared to the ground state, relatively less likely to be found
- Do the CMS and ATLAS results show some "QGP-like" quarkonium "melting"?
- Is it even a suppression? Maybe it's a lower state enhancement?
 →In any case seems to be a hard UE correlated phenomenon

Quarkonia Ratios Expected From m_{T} Scaling

PRD 107, 014012

- Transverse mass scaling lets one define an expectation for the excited states relative to the ground states
- Works well ~universally for light mesons at LHC energies
- Looking at Upsilon meson cross-sections shows missing excited states at low p_T for Y(2S) factor of 1.6 are missing for Y(3S) factor of 2.4!

Co-mover Interaction Model (CIM)

EPJC 81, 669 (2021)

- Within CIM, quarkonia are broken by collisions with comovers – i.e. final state particles with similar rapidities.
- CIM is typically used to explain *p*+A and A+A systems, matches CMS Upsilon pp data.
- Could it reproduce ATLAS data? Crosssections?

Summary

- Comparing Pb+Pb and pp Upsilon production implies some deconfinement
 - Current data doesn't yet distinguish between deconfinement models
- Evidence from Upsilon mesons that there is some non-trivial interaction between the "UE" and a hard scattering in **pp** collisions
 - Appears to be a suppression of excited states
 - Effect is large and significant

Extra Slides

Upsilon Mesons in 5.02 TeV Pb+Pb & pp

- Selections:
 - Y(n)S $\rightarrow \mu\mu$
 - p_T < 30 GeV, |y|<1.5
 - [Centrality 0-80%]
- Extraction:
 - Signal = Crystal Ball + Gauss
 - Bkg = pol2 or $erf \times exp$
- Raw data already shows evolution of excited states in Pb+Pb

Zvi Citron HP2023 28 March 2023

Systematics

Collision type	Sources	Υ(1S) [%]	$\Upsilon(nS)$ [%]	$\Upsilon(nS)/\Upsilon(1S)$ [%]
	Luminosity	1.6	1.6	-
<i>pp</i> collisions	Acceptance	0.3–9.3	0.2–4.1	-
	Efficiency	2.7–7.0	2.8-4.0	3.0-7.1
	Signal extraction	3.1–10.2	4.3–11.9	4.5-12.2
	Bin migration	<1	<1	-
	Primary-vertex association	2.0	2.0	-
Pb+Pb collisions	$\langle T_{\rm AA} \rangle$	0.8-8.2	0.8-8.2	-
	Acceptance	0.3–9.3	0.2–4.1	-
	Efficiency	4.0–15.0	3.9–25.3	4.4-28.8
	Signal extraction	3.8–16.3	14.6–28.7	16.6–31.5
	Bin migration	<2	<2	-
	Primary-vertex association	3.4	3.4	-

X

But what about pp?

- Soft sector observables that were once (uniquely) associated with a QGP have been measured in pp collisions
 - Most prominently "flow" which persists to low multiplicity pp & even photo-nuclear interactions
 - Strangeness enhancement
- Can we tell a similar Upsilon story?
- Here we look at Upsilon meson correlations with inclusive charged particles to try to bridge the soft-hard

ALI-PREL-321075

<u>Eur. Phys. J. C 77 (2017) 428</u>

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- In a previous study we asked: Does the presence of a hard scattering in the collision change "something-likegeometry" and consequently the observed "flow"?
- To answer we studied v₂ via 2particle correlations in pp collisions 'tagged' by a Z boson
- The answer to above question is not really

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- Developed techniques for HI-style analysis in high-luminosity pp collisions
 - We learned how to look at all tracks in the event even with high pile-up conditions
 - Starting thinking about where else this could be used ... **Upsilon mesons**!

Eur. Phys. J. C 80, 64 (2020)

CMS Measurement of Y(nS) and pp Multiplicity

 CMS results all the way back in 2014 challenge this picture by showing a decrease in excited Y states compared to the ground state vs pp multiplicity

CMS Measurement of Y(nS) and pp Multiplicity

- CMS results all the way back in 2014 challenge this picture by showing a decrease in excited Y states compared to the ground state vs pp multiplicity
- More detailed measurements in 2020

CMS Measurement of Y(nS) and pp $S_{xy}^T = \frac{1}{\sum_i p_{Ti}} \sum_i \frac{1}{p_{Ti}} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{pmatrix}$

 $S_T = 1 \rightarrow \text{not jet-like}$

- CMS results all the way back in 2014 challenge this pictures by (1s) showing a decrease in $\exp(\frac{M^{AR}}{track} = 0$ Y states compared to the group d state vs pp multiplicity Y(3S) / Y(1S)
- - Including analysis of event $N_{\text{track}}^{\Delta R} > 2$ geometry via spherocity $W_{\text{figh}} < 1.2$ suggests effect is connected with UE net jets $0 \xrightarrow{0}{7}$ jet-like¹⁴⁰

Technical Fit Things

fit
$$(m) = \sum_{nS} N_{\Upsilon(nS)} F_n(m) + N_{bkg} F_{bkg}(m)$$

 $F_n(m) = (1 - \omega_n) CB_n(m) + \omega_n G_n(m)$ Crystal Ball + Gaussian
 $F_{bkg}(m) = \sum_{i=0}^{3} a_i (m - m_0)^i; a_0 = 1$ Polynomial

$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix}$$

Systematics Summary

	$p_{\rm T}^{\mu\mu} \le 4 {\rm GeV}$	$4 < p_{\rm T}^{\mu\mu} \le 12 {\rm GeV}$	$12 < p_{\rm T}^{\mu\mu} \le 30 {\rm GeV}$	$p_{\rm T}^{\mu\mu} > 30 {\rm GeV}$
$\Upsilon(1S)$	0.5 - 0.6	0.5 - 0.7	0.7 - 0.8	0.8 - 0.9
$\Upsilon(2S)$	0.6 - 0.6	0.5 - 0.7	0.7 - 0.8	0.8 - 1.0
$\Upsilon(3S)$	0.9 – 1.3	0.5 - 0.8	0.7 - 0.8	0.8 - 0.9
$\Upsilon(1S) - \Upsilon(2S)$	0.11 - 0.15	0.06 - 0.10	0.12 - 0.21	0.2 - 0.5
$\Upsilon(1S) - \Upsilon(3S)$	0.6 – 0.9	0.14 - 0.36	0.14 - 0.15	0.16 – 0.19

Table 1: Systematic uncertainties for measurements of $\langle n_{ch} \rangle$ and their differences for different $\Upsilon(nS)$ states and for the difference between $\langle n_{ch} \rangle$ measured for $\Upsilon(1S) - \Upsilon(nS)$. The values are the number of charged particles with $0.5 \le p_{\rm T} < 10$ GeV and $|\eta| < 2.5$.

Shown here in "units" of n_{ch} but propagated to all quantities

Does the rapidity matter?

ALICE result on forward (normalized) $\Upsilon(2S)/\Upsilon(1S)$ vs (normalized) tracks at midrapidity

Looks flat unlike CMS, but must be careful about sensitivity of observables

S A direct answer should come from $\Delta \eta$ – analysis

