

The heavy quark diffusion coefficient from 2+1 flavor lattice QCD

Olaf Kaczmarek

University of Bielefeld

[L. Altenkort, OK, R. Larsen, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach, Heavy Quark Diffusion from 2+1 Flavor Lattice QCD, arXiv:2302.08501]

[L. Altenkort, A.M. Eller, OK, L. Mazur, G.D. Moore, Heavy quark momentum diffusion from the lattice using gradient flow, PRD103 (2021) 014511]

[A.Francis, OK, M. Laine, T. Neuhaus, H. Ohno, Nonperturbative estimate of the heavy quark momentum diffusion coefficient, PRD92(2015)116003]

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions Aschaffenburg, 29.03.2023

Vector-meson spectral function – hard to separate different scales

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T)$$

$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Different contributions and scales enter

in the spectral function

- continuum at large frequencies
- possible bound states at intermediate frequencies
- transport contributions at small frequencies
- in addition cut-off effects on the lattice

Spectral functions in the QGP

difficult to extract D_s from vector meson correlation fct.

$$G_{\mu\nu}(\tau, \vec{x}) = \langle J_{\mu}(\tau, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x})$$

→ narrow transport peak hard to resolve
 → large lattices and continuum extrapolation needed
 → use perturbation theory to constrain the UV behavior
 ⇒
 easier to extract heavy quark momentum diffusion

 $\stackrel{\Rightarrow}{\operatorname{coefficient}} \kappa$ in the heavy quark mass limit

 \rightarrow smooth $\omega \rightarrow 0$ limit expected

Heavy Quark Effective Theory (HQET) in the large quark mass limit

for a single quark in medium

leads to a (pure gluonic) "color-electric correlator"

[J.Casalderrey-Solana, D.Teaney, PRD74(2006)085012, S.Caron-Huot, M.Laine, G.D. Moore, JHEP04(2009)053]

- \rightarrow large correction towards strong interactions
- \rightarrow non-perturbative lattice methods required

 $\rightarrow \tau$

Gradient the gradient of the

$$\mathcal{O}(x,t) \xrightarrow{t \to 0}{\overline{\partial t}} \sum_{k} q_{k}(t,t) \mathcal{O}_{k}^{R}(x) - \frac{\partial S_{\mathrm{YM}}}{\partial A_{\mu}}$$

$$A_{\mu}(t=0,x) = A_{\mu}(x)$$

- continuous smearing of the gauge fields, effective smearing radius: $r_{\text{smear}} \sim \sqrt{8t}$ - $ga_{uge}^{R}(x) = \frac{1}{2} G_{\rho\sigma}^{a}(x,t) G_{\rho\sigma}^{a}(x,t)$ - $ga_{uge}^{R}(x) = \frac{1}{2} G_{\rho\sigma}^{a}(x,t) G_{\rho\sigma}^{a}(x,t)$
- no UV divergences at finite flow-time $t \rightarrow$ operators of flowed fields are renormalized
- UV fluctuations effectively reduces \rightarrow noise reduction technique
- Applicable in quenched and full QCD \rightarrow methods developed in quenched studies

What is the flow time dependence of correlation functions? How to perform the continuum and $t\rightarrow 0$ limit correctly? Gradient flow - *diffusion* equation for the gauge fields along extra dimension, *flow-time t* [M. Lüscher, 2010]

- continuous smearing of the gauge fields, effective smearing radius: $r_{
 m smear} \sim \sqrt{8t}$
- gauge fields become smooth and renormalized
- no UV divergences at finite flow-time $t \rightarrow$ operators of flowed fields are renormalized
- UV fluctuations effectively reduces \rightarrow noise reduction technique
- Applicable in quenched and full QCD \rightarrow methods developed in quenched studies

What is the flow time dependence of correlation functions? How to perform the continuum and $t\rightarrow 0$ limit correctly?

LO perturbative limits

for the flow-time dependence:

 $\tilde{\tau}_f < 0.1136(\tau T)^2$ $G_{\tau_F}^{\rm norm}(\tau)$ $\sqrt{8\tau_F}T =$ 0.00. cont 10^{4} 0.00. latt 0.05, cont0.05, latt 0.10, cont+0.10, latt 10^{3} 10^{2} 10^{1} τI $10^{0}_{0.0}$ 0.50.1 0.2 0.3 0.4[A.M Eller, G.D. Moore, PRD97 (2018) 114507]

2+1-flavor lattice QCD results on the flow dependence of the color-electric correlator:

Effective reduction of UV fluctuations \rightarrow good noise reduction technique Signal gets destroyed at flow times above the perturbative estimate Linear behavior at intermediate flow times

Lattice set up

2+1-flavor lattice QCD on large and fine isotropic lattices at four temperatures above $T_{\rm c}$

- HISQ action with physical strange quark mass and $m_s/m_l=5~(m_\pi \approx 300~MeV)$
- using gradient flow method to improve the signal

$T [{\rm MeV}]$	T/T_c	$a[{\rm fm}]$	eta	N_{σ}	N_{τ}	$\# \operatorname{conf}$
195	1.09	0.0505	7.570	64	20	5899
		0.0421	7.777	64	24	3435
		0.0280	8.249	96	36	2256
220	1.22	0.0449	7.704	64	20	7923
		0.0374	7.913	64	24	2715
		0.0280	8.249	96	32	912
251	1.40	0.0393	7.857	64	20	6786
		0.0327	8.068	64	24	5325
		0.0280	8.249	96	28	1680
293	1.63	0.0336	8.036	64	20	6534
		0.0306	8.147	64	22	9101
		0.0280	8.249	96	24	688

1) perform the continuum limit, $a \rightarrow 0 \leftrightarrow N_t \rightarrow \infty$

- 2) perform the flow time to zero limit of the continuum correlators
- 3) determine κ in the continuum using an Ansatz for the spectral fct. $\rho(\omega)$

Lattice set up

2+1-flavor lattice QCD on large and fine isotropic lattices at four temperatures above $T_{\rm c}$

- HISQ action with physical strange quark mass and $m_s/m_l=5~(m_\pi \approx 300~MeV)$
- using gradient flow method to improve the signal

$T \; [{\rm MeV}]$	T/T_c	$a[{ m fm}]$	eta	N_{σ}	N_{τ}	$\# \operatorname{conf}$
195	1.09	0.0505	7.570	64	20	5899
		0.0421	7.777	64	24	3435
		0.0280	8.249	96	36	2256
220	1.22	0.0449	7.704	64	20	7923
		0.0374	7.913	64	24	2715
		0.0280	8.249	96	32	912
251	1.40	0.0393	7.857	64	20	6786
		0.0327	8.068	64	24	5325
		0.0280	8.249	96	28	1680
293	1.63	0.0336	8.036	64	20	6534
		0.0306	8.147	64	22	9101
		0.0280	8.249	96	24	688

1) perform the continuum limit, $a \rightarrow 0 \leftrightarrow N_t \rightarrow \infty$

2) perform the flow time to zero limit of the continuum correlators

3) determine κ in the continuum using an Ansatz for the spectral fct. $\rho(\omega)$

Gradient Flow method – 1) $a \rightarrow 0$ limit at fixed flow time

- cut-off effects get reduced with increasing flow time
- continuum limit, $a \rightarrow 0$ ($N_t \rightarrow \infty$), at fixed physical flow time:

well defined continuum correlators for different finite flow times
 next step: flow time to zero extrapolation of continuum correlators

Gradient Flow method – 1) $a \rightarrow 0$ limit at fixed flow time

- cut-off effects get reduced with increasing flow time
- continuum limit, $a \rightarrow 0$ ($N_t \rightarrow \infty$), at fixed physical flow time:

well defined continuum correlators for different finite flow times
 next step: flow time to zero extrapolation of continuum correlators

Continuum limit, $a \rightarrow 0 (N_t \rightarrow \infty)$, Flow time limit, $t \rightarrow 0$, followed by at fixed physical flow time: for each distance: 0.250.250.300.30 G_E G_E $\sqrt{8 au_{
m F}}/ au_{
m F}$ 10^{-10} Inorm $\gamma_{\rm norm}$ au T**1**0.500 9 τT **1**0.472 6 **1**0.500 **I** 0.444 8 **I** 0.458 **I** 0.417 **1**0.417 **I** 0.389 **I** 0.375 7**I** 0.361 5**I** 0.333 **I** 0.333 **1**0.292 6**I** 0.306 **I** 0.250 **I** 0.278 **I** 0.250 54 T=293MeV T=195MeV $8\tau_{\rm F}/\tau^2$ $8\tau_{\rm F}/$ 40.050.000.05 0.000.100.10

- \rightarrow well defined continuum and flow time extrapolation
- \rightarrow well defined renormalized correlation function

Continuum extrapolated correlation function

Continuum extrapolated color-electric correlation function from

2+1-flavor lattice QCD at four temperatures above T_c

Determine κ in the continuum using various Ansätze for the spectral function $\rho(\omega)$ fitted to the continuum extrapolated correlation functions

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T) \qquad K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Models for the spectral function

Spectral function models with correct asymptotic behavior

 $\rho_{\rm uv}(\omega) = \frac{g^2(\bar{\mu}_\omega)C_F\omega^3}{6\pi}$ $\rho_{\rm ir}(\omega) = \frac{\kappa\omega}{2T}$

modeling corrections to ρ_{IR} in various ways

Label	$ ho_{ m model}$	μ	Fit parameters
\max_{LO}	$\max(\Phi_{\rm ID}, \Phi_{\rm III})$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
\max_{NLO}	$\max(\Psi_{\mathrm{IR}},\Psi_{\mathrm{UV}})$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	<i>//// ,1</i>
$\mathrm{smax}_{\mathrm{LO}}$	$\sqrt{\Phi^2 + \Phi^2}$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$\mathrm{smax}_{\mathrm{NLO}}$	$\int \Psi_{\rm IR} + \Psi_{\rm UV}$	$\max(\mu_{\mathrm{eff}}, \mu_{\mathrm{opt}})$	$\kappa/1$, π
$plaw_{LO}$	$ heta(\omega_{\mathrm{IR}}-\omega)\Phi_{\mathrm{IR}}+$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$\operatorname{plaw}_{\operatorname{NLO}}$	$ heta(\omega - \omega_{\mathrm{IR}}) heta(\omega_{\mathrm{UV}} - \omega) p(\omega) +$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	$\kappa/1$, \mathbf{R}
	$ heta(\omega - \omega_{\mathrm{UV}})\Phi_{\mathrm{UV}}$		

using continuum extrapolated lattice correlators

to fit the models and extract κ

$$G_{\text{model}}(\tau) \equiv \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_{\text{model}}(\omega) \frac{\cosh\left(\frac{1}{2} - \tau T\right)\frac{\omega}{T}}{\sinh\frac{\omega}{2T}}$$

error estimates using fully bootstrapped analysis

$$\kappa/T^3 = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega}$$

Heavy Quark Momentum Diffusion Constant – spectral reconstruction 14

Heavy Quark Momentum Diffusion Constant – spectral reconstruction 15

Spatial heavy quark diffusion coefficient

kinetic equilibration time for charm and bottom:

$$\tau_{kin}^{-1} = \eta_D = \frac{\kappa}{2M_{kin}T} \left(1 + \mathcal{O}\left(\frac{\alpha_s^{3/2}T}{M_{kin}}\right) \right) \frac{T \left[\text{MeV}\right]}{220} \frac{\kappa_E/T^3}{6.0\dots10.8} \frac{2\pi TD}{1.2\dots1.5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{1.0\dots1.5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5.1} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5\dots5.1} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5\dots5\dots5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5\dots5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5\dots5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5\dots5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5} \frac{\tau_{kin} \left[\text{fm/c}\right]}{3.2\dots5$$

Spatial heavy quark diffusion coefficient

Next steps:

- correction may be important for charm
- extend to physical 2+1 flavor QCD
- determine the quark mass correction: $\kappa \simeq \kappa_E + \frac{2}{3} \langle v^2 \rangle \kappa_B$, $\langle v^2 \rangle \approx \frac{3T}{M_{kin}} \left(1 \frac{5T}{2M_{kin}} \right)$ [A. Bouttefeux, M. Laine, HEP 12 (2020) 150] [M. Laine, JHEP 06 (2021) 139]
- determine charm and bottom quark diffusion coefficient from vector meson correlators