Heavy Flavor and Quarkonia in PHENIX

Brandon Blankenship (Vanderbilt University) for the PHENIX collaboration

Hard Probes 2023, Aschaffenburg, Germany March 29, 2023

Supported in part by DOE grant Grant No. DE-FG05-92ER40712

Outline

- Why heavy flavor and why study rapidity dependence?
- PHENIX detector
- Overview of current results
- Ongoing analyses
- Summary and outlook

Heavy flavor as a probe of the QGP

• Large mass of heavy quarks —> only produced in initial hard scatterings

Heavy flavor as a probe of the QGP

- Large mass of heavy quarks -> only produced in initial hard scatterings
- Energy loss and flow effects as they pass through QGP —> particle yields and angular distributions can be modified by interaction with the QGP

Heavy flavor particles as a probe of the QGP

- Large mass of heavy quarks —> only produced in initial hard scatterings
- Energy loss and flow effects as they pass through QGP —> particle yields and angular distributions can be modified by interaction with the QGP
- Heavy flavor particles reconstructed or their semi-leptonic decays —> understanding of heavy quark interaction with QGP medium

$J/\Psi R_{AA}$ and v_2 as probes of QGP

- Quarkonium suppression probes T and density of QGP
- \bullet Multiple mechanisms for J/ Ψ flow
 - Path length dependent dissociation
 - Charm equilibration and J/Ψ regeneration
 - Primordial J/ Ψ equilibration small effect

Rapidity dependence of QGP interactions

- Rapidity dependence of flow gives access to the longitudinal dynamics of QGP
- Heavy flavor and quarkonia dynamics have rapidity-dependent initial state effects
- PHENIX has unique capabilities at RHIC for separating charm and beauty with decay vertex determination at forward rapidity

PHENIX detector

- Central arms: |y|<0.35
 - electrons, hadrons, and photons
- Muon arms: 1.2<|y|<2.2
 - muons and hadrons
- VTX-FVTX: Precise HF tracking and ID over full PHENIX rapidity range

Brandon Blankenship, Hard Probes 2023

J/Ψ R_{AA} and coalescence

v_2 of J/ Ψ at RHIC and LHC

• At LHC energies, J/Ψ has significant v_2 across rapidity

ENIX

- At RHIC , v_2 of J/Ψ is consistent with zero both at mid- and forward rapidity

> Improvement needed for RHIC results to assess the role of coalescence

Inclusive heavy flavor v_2 and R_{AA}

- Electrons from inclusive heavy flavor show significant R_{AA} suppression and non-zero v_2
- Both measurements show significant differences compared to neutral pions
 - Indicates mass ordering of particle interactions with QGP
- Do separated c and b exhibit the same mass ordering behavior?

R_{AA} of separated *charm* and *beauty*

- Clear mass ordering between b->*l* and c->*l* at RHIC and LHC energies
- R_{AA} measurement of open heavy flavor at forward rapidity will provide further insights

PHENIX separated c and b v₂

- $v_2(c \rightarrow e)$ is positive with ~3.5 sigma and follows trend of charged hadron v_2
- v₂(b->e) indicates positive with 1.1 sigma
- ${\scriptstyle \bullet}$ Mass ordering is seen, as in $R_{{\scriptscriptstyle A}{\scriptscriptstyle A}}$

v₂ of separated *c* and *b*

- v_2 of c and b are different at both RHIC and LHC
- Extending the PHENIX measurement to forward rapidity is necessary for a more complete understanding of heavy flavor interactions with QGP

Analysis in PHENIX muon arms

- PHENIX muon arms consist of forward vertex detector (FVTX), absorber, muon tracker (MuTr) and muon identification (MuID)
 - FVTX: precise decay vertex measurement
 - MuTr: tracking and momentum info for particles that make it past absorber
 - MuID: layers of larocci tubes and absorber to filter out remaining hadrons

Track matching and background subtraction in Au+Au

- Due to particles scattering in absorber material a single MuTr track can match to multiple tracks in the FVTX
- Because of this we combine a single MuTr track with all matched FVTX tracks and with tracks from 5 mixed events with similar Z vertex and multiplicity

- Long decay length of kaons and pions —> yield of muons from light hadron decays is Z vertex dependent
- Use this to separate inclusive muon yield into light and heavy flavor decay components -> Measure HF v₂

Using DCA_R to separate c and b

- Measure secondary vertex of decay muons with FVTX —> statistically separate B—>µ and D—>µ decays
- DCA_R measurements provide means to separate *b* and *c*

Brandon Blankenship, Hard Probes 2023

Summary

- \bullet PHENIX has measurements of open and closed heavy flavor v_2 and R_{AA}
- Coalescence of cc pairs could explain the difference between forward and mid-rapidity J/Ψ R_{AA} results
 - $J/\Psi \, v_2$ at RHIC has no rapidity dependence, but the results are not yet conclusive
- v₂ and R_{AA} light and heavy flavor (c and b) show mass ordering at midrapidity
 - Measurements will be extended to forward rapidity to get a more complete understanding of heavy flavor interactions with QGP
- Inclusion of the Run16 Au+Au 200 GeV dataset will double statistics for ongoing PHENIX heavy flavor analyses

Back-ups

Ongoing PHENIX muon arm analysis

Brandon Blankenship, Hard Probes 2023

Radial distance of closest approach (DCA_r)

- DCA_r is determined by projecting the particle track determined by the FVTX onto a plane in the z-axis located at the initial collision point
- Essentially this is a measurement of the distance from the primary vertex at which a particle was produced, i.e. for a prompt particle $DCA_r = 0$
- With a precise measurement you can separate detected muons according the particle from which they decayed

3D visualization of DCA_r

r-z plane visualization of DCA_r

