Measurement of D_{s1}^{+} and D_{s2}^{*+} production, and D^{*+} spin alignment in pp at $\sqrt{s} = 13$ TeV

Hard Probes 2023, Aschaffenburg - 29/03/2023

N Stefano Politanò

Politecnico and INFN Torino, on behalf of the ALICE Collaboration

ALICE

Charm-quark hadronisation in small systems

S. Politanò (PoliTO) stefano.politano@cern.ch

- Heavy quarks produced in initial hard-scattering processes in hadronic collisions
- Heavy-flavour (HF) hadron production measurements:
 - test pQCD calculations
 - reference for Pb-Pb

- Factorisation approach of production cross section
 - fragmentation functions $(D_c \rightarrow H_c)$: phenomenological functions parameterised on e⁺e⁻ and e⁻p collision data \rightarrow no dependence on colliding system assumed
 - Ratios of particle species sensitive to HF quark hadronisation

$$\frac{\mathrm{d}\sigma^{H_{c}}}{\mathrm{d}p_{\mathrm{T}}} = \Pr{\mathrm{PDF}(x_{1},\mu_{\mathrm{F}}) \operatorname{PDF}(x_{2},\mu_{\mathrm{F}})} \otimes \frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p_{\mathrm{T}}^{c}}(x_{1},x_{2},\mu_{\mathrm{R}},\mu_{\mathrm{F}})}{\operatorname{Parton distribution functions}} \otimes \frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p_{\mathrm{T}}^{c}}(x_{1},x_{2},\mu_{\mathrm{R}},\mu_{\mathrm{F}})}{\operatorname{Hard scattering cross}} \otimes \frac{D_{c \to \mathrm{H}_{c}}(z = p_{\mathrm{H}_{c}}/p_{c},\mu_{\mathrm{F}})}{\operatorname{Fragmentation function}(\mathrm{FF})}$$

Charm-hadron production ratio vs. p_{τ}

S. Politanò (PoliTO) stefano.politano@cern.ch ALICE

3|16

- No significant p_{τ} dependence on meson-to-meson ratios
 - Good agreement with model calculations based on factorisation approach and FFs universality

Baryon sector: the cool kid on the block!

- Strong p_{τ} dependence
 - Ratio significantly higher w.r.t. e⁺e⁻ and e⁻p collisions
 - Ratio well described by additional hadronization mechanism scenarios (SHM+RQM, Catania, CR, QCM)

Charm-hadron production ratio vs. multiplicity

S. Politanò (PoliTO) stefano.politano@cern.ch

ALICE: PLB 829 (2022) 137065 CE-SH: PLB 815 (2021) 136144 CR-BLC: JHEP 08 (2015) 003 PYTHIA: EPJC 74 (2014) 8

- No significant dependence on charged-particle multiplicity in meson sector
- Strong dependence observed in charm baryon sector in $1 < p_T < 12$ GeV/c
 - Well described by color reconnection/SHM models
- Are we missing something for mesons?
 - How can we further test QCD-inspired models?
 - Excited states and their properties!

A Large Ion Collider Experiment

S. Politanò (PoliTO) stefano.politano@cern.ch

D-meson excited states reconstructed via hadronic decays in HM and MB pp collisions

 $- D^{*+} \rightarrow D^0 \pi^+$

$$\begin{array}{l} - \hspace{0.1cm} D_{s1}^{ +} \rightarrow D^{*+} K^{0}_{s} \rightarrow D^{0} \pi^{+} \pi^{-} \pi^{+} \\ - \hspace{0.1cm} D_{s2}^{ *+} \rightarrow D^{+} K^{0}_{s} \rightarrow D^{0} \pi^{+} \pi^{-} \pi^{+} \end{array}$$

Time Projection Chamber (TPC)

Time Of Flight (TOF)

S. Politanò (PoliTO) stefano.politano@cern.ch

- Very large zoo of D_s-meson resonances predicted, but only a few measured
 - Measurements at LHC mainly focus on resonance properties, not production (<u>JHEP 10 (2012) 151</u>, <u>JHEP 02 (2016) 133</u>)
 - Hadronisation in charm-meson sector similar to lepton collisions for resonances?
 - Investigate hadronic rescattering phase
 - Investigate multiplicity dependence
 - Test recombination/SHM/CR scenarios

- D_{s1}⁺ and D_{s2}^{*+} resonances decay in D-meson + V0:
 - $\quad \mathsf{D}_{\mathsf{s1}}^{+} \to \mathsf{D}^{*+} \mathsf{K}_\mathsf{S}^{-0}$
 - $\quad \mathsf{D}_{\mathrm{s2}}^{*+} \to \mathsf{D}^{+} \,\mathsf{K}_{\mathrm{S}}^{0}$
- D*+/D+ selected via Machine Learning (ML) multiclass classification to reject large combinatorial background and b→D contribution
- K_s⁰ selected via linear selections
- No further selection on D_s resonance states

- D_{s1}⁺ state measured in MB and HM samples
 - Select signal in a "confidence region" with enough counts: $2 < p_T < 24$ GeV/c
 - Voigtian function for the signal ($\Gamma = 0.9 \text{ MeV}/c^2$)
 - Exponential times power-law for the background

- D_{s2}^{*+} state measured in MB and HM samples
 - Select signal in a "confidence region" with enough counts: $2 < p_T < 24$ GeV/c
 - Voigtian function for the signal ($\Gamma = 17 \text{ MeV}/c^2$)
 - First-order polynomial for the background

D resonance corrected yields vs. multiplicity

S. Politanò (PoliTO) stefano.politano@cern.ch

20

15

25

ALICE

Ŧ

• $D_{s1}^+ \times BR$

+ $D_{s2}^{*+} \times BR$

35

|n| < 0.5

30

 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle$

• D_s⁺

- First measurement of D₁⁺ and D_{s2}^{*+} production at the LHC
 - Compared to ground state in MB and HM vs. multiplicity
 - Larger production of ground state compared to resonance, as expected
 - No available measurement of D⁺ resonance <u>BR</u>

ALI-PREL-538450

 $d^2N/(dp_Tdy)$ (GeV⁻¹ c)

10⁻³

10

 10^{-5}

10⁻⁶

Ŧ

٩

10

5

0

$D_{s1}^{+}/D_{s} p_{T}^{-}$ integrated yield ratio vs. multiplicity

- ratio to ground states factorises
 strangeness and charm
 dependencies for predictions
- no multiplicity dependence explicitly expected from SHM and SHMc
 - no multiplicity dependence observed in data
 - models compatible with data

 $D_{s1}^{+}/D_{s}^{+}p_{T}^{-}$ integrated yield ratio

$D_{s2}^{*+}/D_{s}p_{T}$ -integrated yield ratio vs. multiplicity

- $D_{s2}^{*+}/D_{s}^{+}p_{T}^{-}$ integrated yield ratio
 - ratio to ground states factorise strangeness and charm dependencies for predictions
 - no multiplicity dependence explicitly expected from SHM and SHMc
 - multiplicity dependence not expected in SHM
 - hint of enhancement at low mult. might arise from hadronic rescattering due to D_{s2}^{*+} lifetime (τ (D_{s2}^{*+}) ~ 11.61 fm/c; (τ(D_{s1}⁺) ~ 219 fm/c))
 - ⇒ some tension with models, about 2.5σ (1.5σ) at low (high) mult.

- Spin properties in HF quark-to-hadron transition not settled yet
- Spin polarisation:
 - Spin alignment with respect to a chosen direction (helicity axis)
 - Experimentally measured as anisotropies in the decay product angular distributions:

$$rac{dN}{d{
m cos} heta^*} \propto [1-
ho_{00}+(3
ho_{00}-1){
m cos}^2 heta^*]$$

- Spin density matrix element:
 - *Q*₀₀ = ¼ → No spin alignment
 *Q*₀₀ ≠ ¼ → Spin alignment

D*+ spin alignment at the LHC

- First measurement of the prompt and non-prompt D^{*+} spin alignment at the LHC
 - ρ_{00} (prompt D^{*+}) = 0.324 ± 0.004 (stat.) ± 0.008 (syst.)
 - Prompt D*+ compatible with no polarization
 - ρ_{00} (non-prompt D^{*+}) = 0.455 ± 0.022 (stat.) ± 0.035 (syst.)
 - Non-prompt D^{*+} ℓ₀₀ > 1/3 due to the helicity conservation

→
$$B(S=0) \rightarrow D^*+(S=1) + X$$

S. Politanò (PoliTO)

stefano.politano@cern.ch

14|16

ALICE

D*+ spin alignment at the LHC

- First measurement of the prompt and non-prompt D^{*+} spin alignment at the LHC
 - PYTHIA8 + EvtGen describes both the components
 - helicity conservation implemented in EvtGen
 - Important baseline for A-A collisions
 - disentangle medium-induced from genuine polarisation effects

S. Politanò (PoliTO)

stefano.politano@cern.ch

15|16

ALICE

Summary

- Charm hadron production can be further investigated via D-meson resonance production studies
- First measurement of D_{s1}^{++} and D_{s2}^{+++} production at the LHC
- Excited-to-ground state ratios vs. multiplicity compared to SHM-based models → tension compared to expectations found in D_{s2}^{*+} case
- First measurement of the prompt and non-prompt D^{*+} spin alignment at the LHC
 - Prompt D^{*+} not aligned; non-prompt D^{*+} aligned

	ALICE
	rrunnin NEW!
$\widehat{\mathbf{v}}^{(0)}$ pp, $\sqrt{s} = 13 \text{ TeV}, y $	< 0.5
+ Data ↑ 0.08 - SHM	a $(2 < p_{T} < 24 \text{ GeV}/c)$
	π GSI–Heidelberg ($\rho_{T} > 0$)
0.02	
 Model predictions only BR = 23.35% PRD 93 (2016) 03 	34035
0 5 10 15 20	0 25 30 35
ALI-PREL-538456	$\left<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\right>_{\left \eta ight <0.5}$

Additional material

Quantum numbers:

- heavy-quark limit: properties of heavy-light meson determined by light-quark
- L is the orbital angular momentum

$$- j_q = L \oplus s_q \rightarrow j_{s-bar} = \frac{1}{2}, \frac{3}{2}$$

- $J = j_q ⊕ s_Q → J = 0, 1; 1, 2;$
- Spectroscopy notation: $n^{(2S+1)}L_{J}$
 - natural spin-parity: $J^P = 0^+, 1^-, 2^+$
 - unnatural spin-parity: $J^P = 0^-, 1^+, 2^-$
- **PDG notation**: $D_{sJ}^{*}(m)^{0/\pm}$, where the * subscript indicate natural spin-parity

Predictions for D_{1}^{+} and D_{2}^{*+} BRs - For models only

S. Politanò (PoliTO) stefano.politano@cern.ch

Initial	Final	Width	B.R.
state	state	(MeV)	(%)
$D_s(1^3P_0)$	$D_s^*\gamma$	0.00901	0.00407
2484	DK	221	99.8
	Total	221	100
$D_s(1P_1)$	$D_s\gamma$	0.0152	11.2
2549	$D_s^*\gamma$	0.00540	3.99
	D^*K	0.129	95.3
	Total	0.135	100
$D_s(1P_1')$	$D_s\gamma$	0.00923	0.00659
2556	$D_s^*\gamma$	0.00961	0.00687
	D^*K	140.	100
	Total	140.	100
$D_s(1^3P_2)$	$D_s^*\gamma$	0.0189	0.188
2592	DK	9.40	93.4
	D^*K	0.545	5.41
	$D_s\eta$	0.105	1.04
	Total	10.07	100

 $BR(D_{c1}^{+} \rightarrow D^{*}K) = 95.3\%$

- Two possible charge states: $D^{\ast 0}K^{\ast}$ and $D^{\ast \ast}K^{0}$
 - → $D^{*+}K^0 = (0.85 \pm 0.12) D^{*0}K^+$

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)
D*(2010) ⁺ K ⁰	0.85 ± 0.12
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm 0.09$
$D^+\pi^-K^+$	0.028 ± 0.005
D*(2007) ⁰ K ⁺	DEFINED AS 1

- 50% K_s⁰ 50% K_i⁰
- $BR(D_{c1}^{+} \rightarrow D^{*+}K_{c0}) = (22 \pm 2)\%$
- $BR(D_{c2}^{*+} \rightarrow DK) = 93.4\%$
 - Two possible charge states: $D^{0}K^{+}$ and $D^{+}K^{0}$
 - No information, assume 50% 50%
 - 50% K_s⁰ 50% K_i⁰
 - $BR(D_{c2}^{*+} \rightarrow D^{+}K_{c}^{0}) = 23.35\%$

SLIDES!

- Strong p_{T} dependence on baryon-to-meson ratios
 - Ratio significantly higher than e^+e^- and e^-p collisions (LEP average: 0.113 ± 0.013 ± 0.006)
 - Ratio well described by charm-enriched scenarios (SHM+RQM, Catania, CR, QCM)

ALI-DER-493896

ALI-DER-493901

D*+ spin alignment at the LHC

- First measurement of the prompt and non-prompt D^{*+} spin alignment at the LHC
 - PYTHIA8 + EvtGen manages to describe both the components
 - helicity conservation implemented in EvtGen
 - Important baseline for A–A collisions
 - Non-prompt D*+ spin alignment + elliptic flow mimic global spin alignment in heavy-ion collisions

S. Politanò (PoliTO)

ALI-PUB-532036

BACK TO

SLIDES

LF resonances

