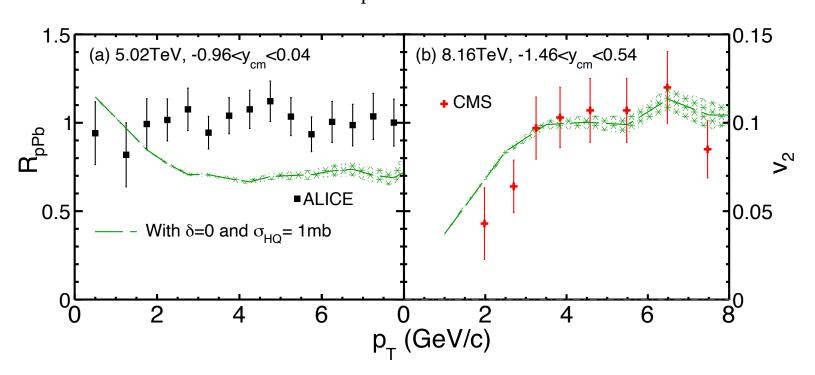
Resolving the R_{pA} and v₂ puzzle of D⁰ mesons in p-Pb collisions

Zi-Wei Lin East Carolina University (ECU)

Based on 2210.07767 & update by Chao Zhang, Liang Zheng, Shusu Shi & ZWL

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, March 26-31, 2023, Aschaffenburg, Germany

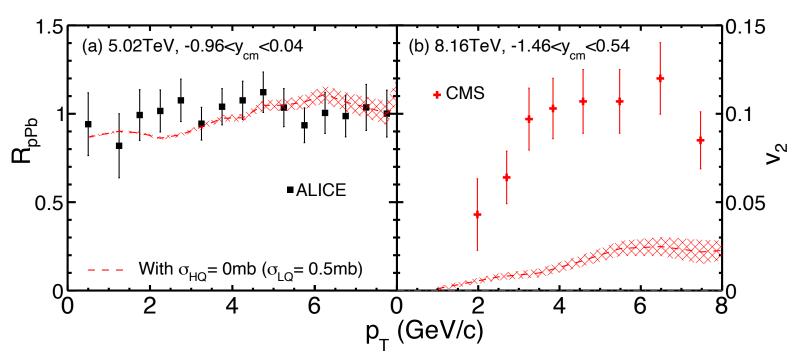

Outline

- The D^0 R_{pA} and v_2 puzzle
- Improved multi-phase transport model for heavy flavors
- Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect
- Summary

The D^0 R_{pA} and v_2 puzzle

LHC p-Pb data on D^0 mesons show \sim no suppression in D^0 R_{pA}

but significant v₂

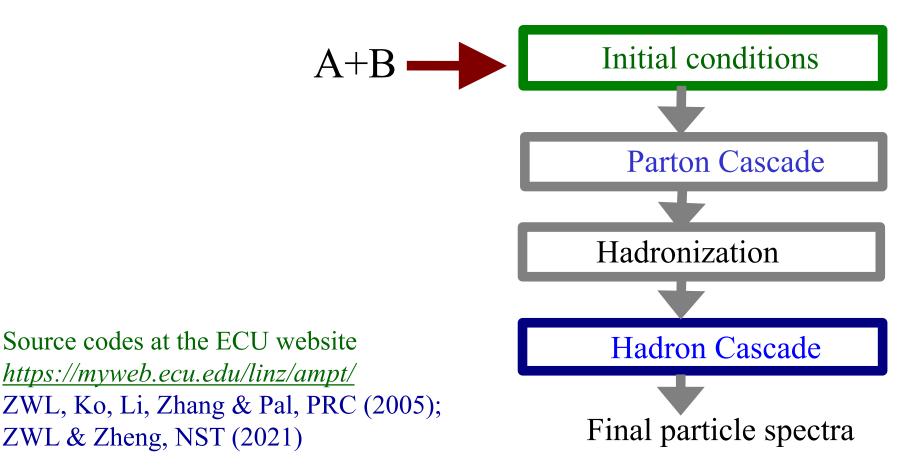


It has been a challenge to describe both data simultaneously:

- sizable $v_2 \rightarrow$ significant charm quark interaction with medium \rightarrow suppression of charm high p_T spectrum in pA and R_{pA} (above)
- Studies based on color glass condensate can describe D and J/ ψ v₂, no R_{pA} results yet. Cheng Zhang et al. PRL (2019), PRD (2020)

The D^0 R_{pA} and v_2 puzzle

• Without charm quark scatterings (below), R_{pA} result can be close to data, but v_2 is very small.


- This was seen in an earlier study: \sim no suppression in R_{pA} , then v_2 is too small. Beraudo et al. JHEP (2016)
- A simultaneous description of the R_{pA} and v_2 data could disentangle different effects (*initial state correlations, cold nuclear, hot medium*) and help understand onset of collectivity & formation of parton matter or QGP

Improved multi-phase transport model for heavy flavors

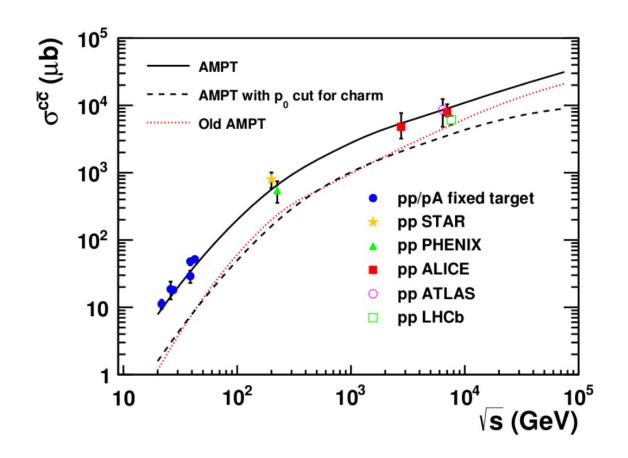
We use a multi-phase transport (AMPT) model for this study.

It was constructed as a self-contained kinetic description of heavy ion collisions:

- evolves the system from initial condition to final observables;
- particle productions of all flavors from low to high p_T;
- addresses non-equilibrium evolution/dynamics (more important for smaller systems).

ZWL & Zheng, NST (2021)

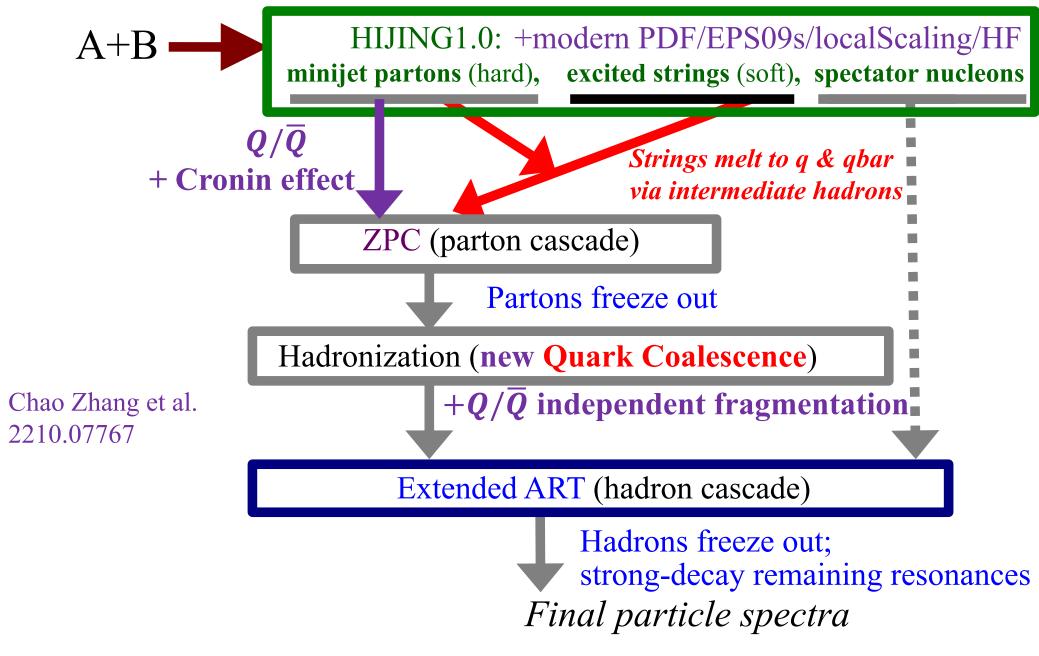
Improved multi-phase transport model for heavy flavors


$$gg \rightarrow gg$$
 cross section in leading-order pQCD $\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}$ is divergent for massless g, so HIJING uses a **minijet cutoff** p_0 for minijets (of ALL flavors).

But heavy flavor (HF) production does not need a cutoff due to heavy quark mass $>> \Lambda_{QCD}$ (e.g. in FONLL)

$$g + g \rightarrow Q + \overline{Q}$$
, $q + \overline{q} \rightarrow Q + \overline{Q}$, ...

- So we remove the p_0 cut on HF productions Zheng et al. PRC (2020) in the two-component model HIJING (initial condition for AMPT)
- Unlike HIJING, we include HF in σ_{jet} : $\sigma_{jet} = \sigma_{jet}^{LF} + \sigma^{HF}$
- We also correct factor of $\frac{1}{2}$ in certain σ_{iet} channels

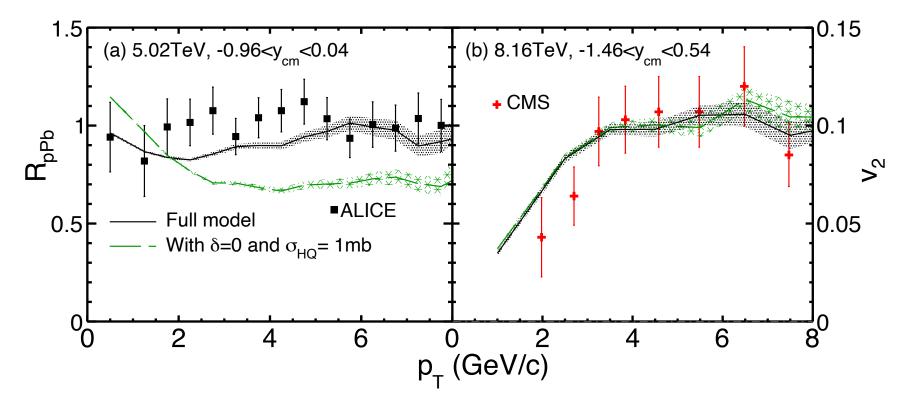

Improved multi-phase transport model for heavy flavors

Zheng et al. PRC (2020)

- Older/public AMPT charm yield << data
- Removing p₀ in HF production greatly enhances charm yield
- This AMPT model well describes world data on total $c\bar{c}$ cross section

Structure of improved AMPT (String Melting version)

The AMPT model used in this study contains all these improvements

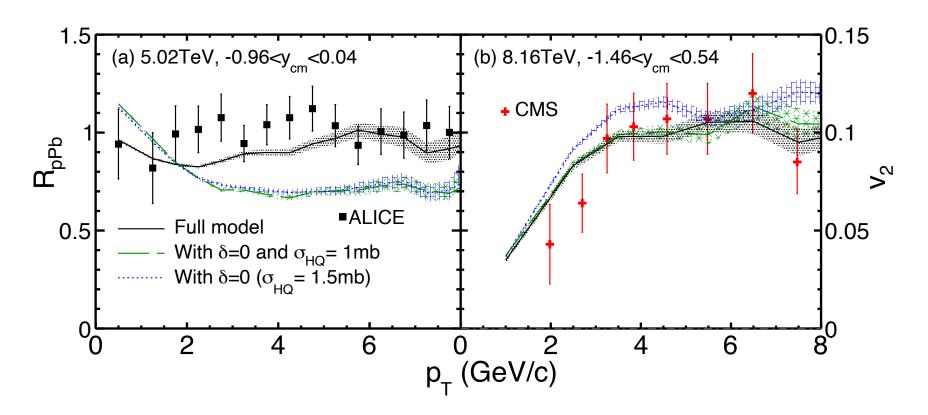

Possible solution of the R_{pA}/v₂ puzzle with the Cronin effect

We implement the Cronin effect on initial charm quarks by broadening $c\bar{c}$ p_T with a random k_T sampled from

$$f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}$$

Mangano et al. NPB (1993) Vogt, PRC (2018, 2021)

 $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$ grows with # of NN collisions of the wounded nucleon(s).

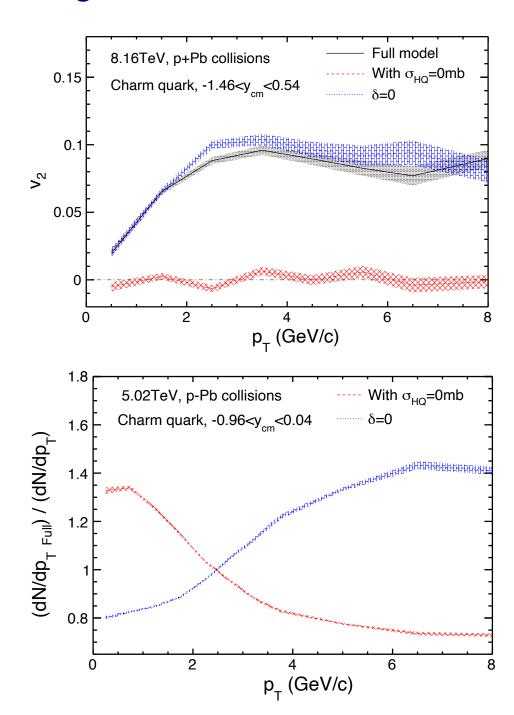


Full model, with Cronin effect at δ =5, σ_{LQ} =0.5mb (for scatterings among u/d/s quarks), σ_{HQ} =1.5mb (for scatterings of charm quarks with other partons), can describe both R_{pA} and v_2 data of D^0 mesons

Possible solution of the R_{pA}/v₂ puzzle with the Cronin effect

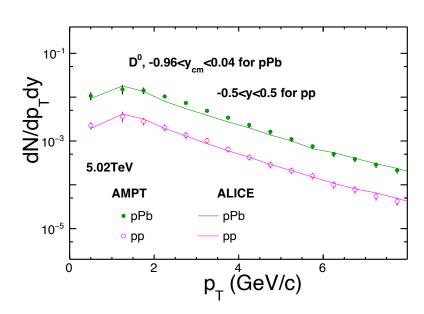
Without the Cronin effect (δ =0): if we get sizable v_2 , then

 D^0 R_{pA} is underestimated due to charm scatterings with the medium (via σ_{HQ}).

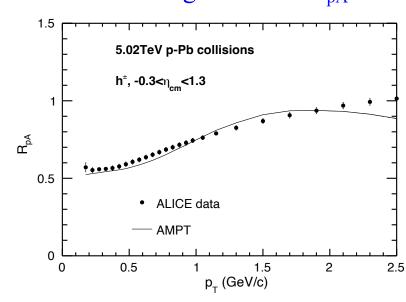

Black curve vs blue curve (both at $\sigma_{HQ}=1.5mb$): the Cronin effect significantly increases charm R_{pA} at moderate/high p_T but modestly decreases charm v_2

Effects from parton scatterings & Cronin effect

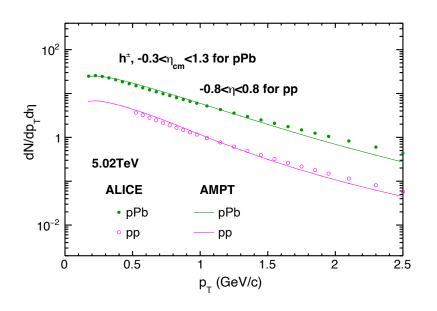
Test results for charm quarks:

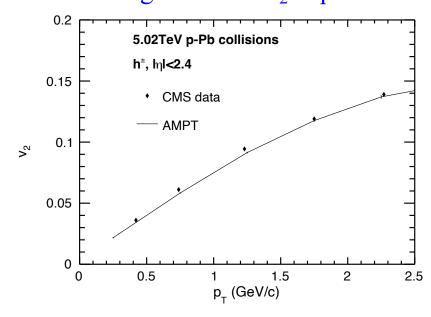

- parton scatterings are mostly responsible for generating charm v_2
- the Cronin effect modestly decreases charm v₂

- parton scatterings significantly suppress charm spectra at moderate/high p_T
- the Cronin effect significantly increases charm spectra at moderate/high p_T



At 5.02 TeV, the full model also reasonably describes


D^0 p_T spectra (to ~8GeV/c)


Charged hadron R_{pA}

Charged hadron p_T spectra (to ~ 1.5 GeV/c)

Charged hadron v₂ in pPb

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the ${\bf k}_{\rm T}$ width as $w=w_0\sqrt{1+(n_{\rm coll}-i)\delta}$

grows with n_{coll} : # of NN collisions of the wounded nucleon(s), i=1 for $c\bar{c}$ produced from the radiation of 1 wounded nucleon, =2 for $c\bar{c}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35~{
m GeV}/c)~\sqrt{b_{
m L}^0(2+a_{
m L}^0)/b_{
m L}/(2+a_{
m L})}~\propto \sqrt{\kappa}$$
 motivated by $\kappa \propto \frac{1}{b_{
m L}(2+a_{
m L})}$ for Lund string fragmentation.

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the ${
m k_T}$ width as $w=w_0\sqrt{1+(n_{
m coll}-i)\delta}$

grows with n_{coll} : # of NN collisions of the wounded nucleon(s), i=1 for $c\bar{c}$ produced from the radiation of 1 wounded nucleon, =2 for $c\bar{c}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35~{\rm GeV}/c)~\sqrt{b_{\rm L}^0(2+a_{\rm L}^0)/b_{\rm L}/(2+a_{\rm L})}~\propto \sqrt{\kappa}$$
 motivated by $\kappa \propto \frac{1}{b_{\rm L}(2+a_{\rm L})}$ for Lund string fragmentation.

• For comparison, $\langle k_T^2 \rangle$ (in GeV²) at 5.02TeV for minimum-bias collisions:

	Our value	HVQMNR Vogt, PRC (2021)
pp	0.04	1.46
p-Pb	3.27	2.50

Our extra broadening (p-Pb relative to pp) is stronger than HVQMNR; further checks are needed (e.g. from J/ψ or Λ_c spectra).

Summary

We have studied p-Pb collisions at LHC energies with an improved multi-phase transport model.

Including a strong Cronin effect allows a simultaneous description of the D^0 meson R_{pA} and v_2 data (at $p_T \le 8$ GeV/c); further checks with other methods/observables are needed.

Parton scatterings significantly suppress charm spectra at moderate/ high p_T , Cronin effect significantly increases charm spectra at moderate/high p_T and thus compensates for the effect from parton scatterings

Charm v_2 is found to be mostly generated by charm quark scatterings, Cronin effect slightly decreases the charm quark or meson v_2

The Cronin effect is expected to grow with the system size, so this may imply the importance of including the Cronin effect in heavy flavor studies (e.g. R_{AA}) in large systems

Backup Slides

Local scaling for self-consistent size dependence in AMPT

Lund symmetric string fragmentation function: $f(z) \propto z^{-1} (1-z)^{a_L} e^{-b_L m_T^2/z}$

 b_L typical values (in 1/GeV²):

~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe the bulk matter at high energy AA collisions.

ZWL, PRC (2014)

This corresponds to a much higher string tension κ :

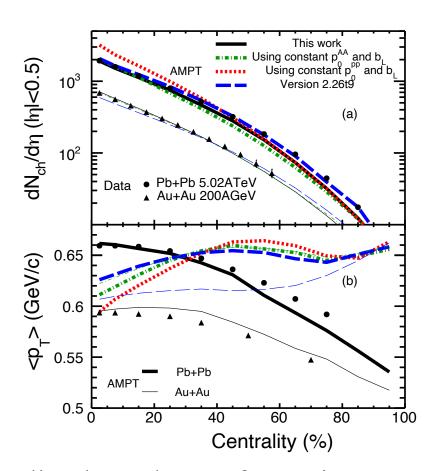
$$(p_T^2) \propto \kappa \propto \frac{1}{b_{\rm L}(2+a_{\rm L})}$$

ZWL et al. PRC (2005)

pp and AA collisions need different values of $\mathbf{b_L}$; same for Chao Zhang et al. PRC (2019) minijet cutoff $\mathbf{p_0}$ (for modern PDFs, is related to $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

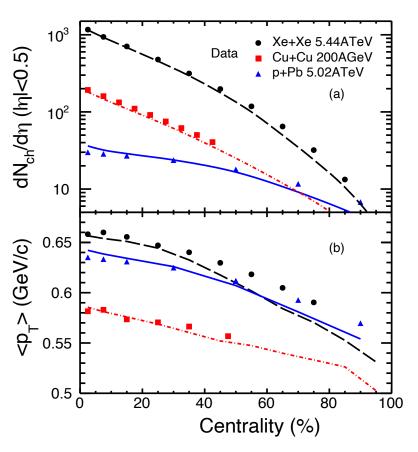
→ We scale them with local nuclear thickness functions:

$$b_L(s_A, s_B, s) = \frac{b_L^{pp}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$$


Chao Zhang et al. PRC (2021)

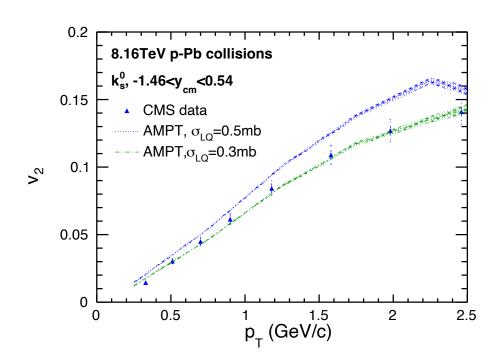
$$p_0(s_A, s_B, s) = p_0^{pp}(s) [\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$$

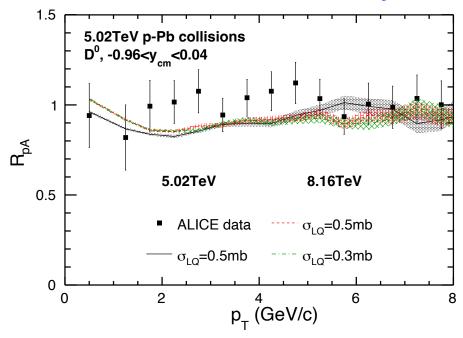
We fit charged hadron $\langle p_T \rangle$ in pp to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy \sqrt{s}

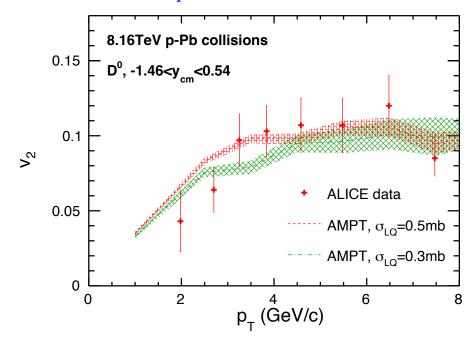

Local scaling for self-consistent size dependence in AMPT

The scaling allows AMPT to self-consistently describe the system size dependence, including centrality dependences of AuAu & PbPb:

Centrality dependence of $\langle p_T \rangle$ is now reasonable, while previous/public AMPT (v2.26t9) fails


Chao Zhang et al. PRC (2021)


Also works for smaller systems


The full model at 8.16 TeV

at the same $\sigma_{LQ}=0.5$ mb or a smaller $\sigma_{LQ}=0.3$ mb (better reproduces Ks v_2):

This change of σ_{LQ} has little effect on D^0 R_{pA} or v_2 :

