Studies of heavy quark dynamics using B mesons with the CMS detector

HP 2023

Tzu-An Sheng for the CMS Collaboration

PLB 829 (2022) 137062 PRL 128 (2022) 252301 Mar. 30 2023

Introduction

Double ratio, 2015 data

B⁺: PRL 119, 152301 B⁰_s: PLB 796 (2019) 168 * Enhanced strangeness predicted for $p_{\rm T} < 15\,{\rm GeV}$ in deconfined medium

[Phys.Lett.B 595 (2004) 202-208, Phys.Lett.B 735 (2014) 445-450]

- Heavy b, c quarks produced at initial hard scattering, recombining with nearby constituent quarks into hadrons
- This talk: 2018 data, 3 times more statistics compared to 2015 B^+ and B^0_s samples

B_c^+ : a bridge between charmonia and bottomonia

- Quarkonia: Recombination of heavy quarks in QGP at low p_{T}
 - Sequential melting w.r.t binding energies: QGP thermometer Phys.Rev.C 63 (2001) 054905
- $\cdot\,$ Intermediate binding energy of B_c^+
 - 0.64 GeV $(J/\psi) < 0.87$ GeV $(B_c^+) < 1.10$ GeV (Y(2S))
 - Sensitive to dissociation + recombination
- + Recombination process of ${\bf b}$ with an uncorrelated ${\bf c}$ in QGP
 - May be more prominent than J/ψ due to its small cross section

B_s^0/B^+ analysis

PLB 829 (2022) 137062

B_s^0/B^+ event selection

• Additionally for B^0_s : $m_{\mathrm{K}^+\mathrm{K}^-} - m_{\phi,\mathrm{PDG}}$

$$\begin{split} \mathsf{B}^+ &\to \mathsf{J}/\psi\,\mathsf{K}^+ \to \mu^-\mu^+\mathsf{K}^+ \\ \mathsf{B}^0_\mathrm{s} &\to \mathsf{J}/\psi\phi(1020) \to \mu^-\mu^+\mathsf{K}^+\mathsf{K}^- \end{split}$$

- Long-lived B mesons \rightarrow large flight length
- Angle between B flight direction and PV-SV displacement $\cos \theta = \hat{r}_{\text{B, flight}} \cdot \hat{p}_{\text{T, RECO}}$ Expect $\hat{p}_{\text{T, RECO}} \parallel \hat{r}_{\text{B, flight}}$
- * χ^2 Probability of the decay vertex
- $\cdot \ p_{\scriptscriptstyle T}$ of the daughter tracks

Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events

Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events

 Training samples: signal MC vs side-band data

B_s^0/B^+ Yield extraction

PLB 829 (2022) 137062

- + First 5\sigma+ observation of B^0_s in PbPb collision
- B⁺ (semi) peaking background:
 - * Partially reconstructed B decay (e.g. $B^0 \rightarrow J/\psi(K^* \rightarrow K^+\pi^-)$
 - · misidentified π in $B^+ \rightarrow J/\psi \pi^+$

B^{0}_{s} and B^{+} cross sections

PLB 829 (2022) 137062

- + Enhanced yields in PbPb at low p_{T} and high centrality
- Dominant uncertainty:
 - Data/MC disagreement on selection variables (BDT score)
 - Tracking efficiency

B_s^0/B^+ yield ratio

$B_s^0/B^+ vs p_T$

- Compatible with PbPb recombination models
- Compatible with pp data

B_s^0/B^+ vs centrality

both plots: PLB 829 (2022) 137062

 Indicate higher B⁰_s/B⁺ ratio in central events but not significant

7

B_s^0/B^+ yield ratio compared with charm

 \cdot Similar magnitudes of D_s/D^0 and B_s^0/B^+

$B_{\rm c}^+$ analysis

PRL 128 (2022) 252301

B_c^+ signal: trimuon semi-leptonic decays

• $m_{J/\psi} + m_{\mu} \simeq 3.2 \,\text{GeV} < m_{3\mu} < 6.3 \,\text{GeV} \simeq m_{\text{B}_{c}^{+}}$

• $\mu^+ \mu^+ \mu^-$ final states: 2 J/ ψ candidates from opposite-sign (μ^+ , μ^-) combinations

3 main backgrounds of $B_c^+ \rightarrow J/\psi \mu^+ v_{\mu}$

3 main backgrounds of $B_c^+ \rightarrow J/\psi \mu^+ v_\mu$

- rotated J/ψ + X
 - Estimated by rotating J/ ψ candidates around the PV
- $\cdot B \rightarrow J/\psi + X$
 - Estimated with simulation
- Fake J/ψ + X
 - Estimated from data by interpolating dimuon mass sidebands

BDT discriminating variables

- + $p_{ au}$ imbalance between J/ ψ and the 3rd μ
- + Ratio of angular distance ΔR between J/ ψ and another 2 μ pair
- + Significance of the 3rd μ vertex displacement from the PV
- 5 other variables from event selections (see slide 22)

BDT selection: 99.9% signal MC efficiency

- rotated J/ ψ + X: rotating J/ ψ candidates around the PV
- $B \rightarrow J/\psi$ + X: simulation
- + Fake J/ψ + X: interpolating dimuon mass sidebands from data

$B_{\rm c}^{\rm +}$ meson production

PRL 128 (2022) 252301

- Enhanced PbPb yield at low $p_{\rm T}$, suppressed at high $p_{\rm T}$ compared to pp result
- Dominant uncertainty: fit, acceptance and efficiency

$B_{\rm c}^{\scriptscriptstyle +}$ meson nuclear modification factor

PRL 128 (2022) 252301

- \cdot Moderate suppression at high $p_{\rm T}$
- \cdot $R_{
 m AA}$ at low $p_{
 m T}$ higher than unity (1 σ) and high $p_{
 m T}$ (1.6 σ)
- Does not significantly depend on centrality

$B_c^+ R_{AA}$ Compared to theory

arXiv:2302.11511

- Compatible with recombination models at different ${\rm B_c^+}$ production cross sections in pp
- Top: Instantaneous Coalescence Model
 - Can account for off-equilibrium (non-thermalized) quark spectra
- Middle/Bottom: Resonance Recombination Model
 - conserves 4-momentum, recovers the equilibrium limit for equilibrated HQ input distributions
- Middle: with space momentum correlations between the coalescing quarks
 - Enhanced recombination of fast-moving heavy quarks with high-flow thermal quark

- Low p_{T} : R_{AA} higher than charged hadron and B^{+}
- High p_{T} : similar suppression
 - \cdot Converge at $p_{
 m T}>20\,{
 m GeV}$
 - Mass-dependent medium modification (e.g. hadronization, dead cone) reduces at high

 p_{T}

arXiv:2201.02659

- Recombination of c and b could increase R_{AA}
- \cdot Need more statistics at low p_{T}

arXiv:2201.02659

Summary

Updated B_s^0/B^+ ratio with the 2018 CMS data

- First observation of $B_s^0 > 5\sigma$ in PbPb collision
- Enhancement at low p_{T} but not significant with the current precision

$B_{\rm c}^+$ measurement

- + First observation of $B_c^+ > 5\sigma$ in PbPb collision
- Low- $p_{\rm T}$ enhancement indicates stronger ${\rm B_c^+}$ recombination

Backup

- $p_{\rm T}^{\mu} > 3.5$ for $|\eta^{\mu}| < 1.2$
- $p_{\mathrm{T}}^{\mu} > 1.5$ for $2.1 < |\eta^{\mu}| < 2.4$
- $\cdot p_{\mathrm{T}}^{\mu} > (5.47 1.89 |\eta^{\mu}|) \text{ for } 1.2 < |\eta^{\mu}| < 2.1$
- $\cdot \ m_{\mu^-\mu^+}$ in J/ ψ or ϕ range
- Probability of 2μ fitted to a common vertex

Systematic uncertainty for B^+/B_s^0

- Due to fit modeling
 - Signal variation: 3-Gaussian, 10% variation of its width, fixing common mean to MC
 - Background variation: low-order polynomial for combinatorial background
 - Estimated with squared sum of maximum variations
- Due to limited MC sample size
 - 1000 generated $\alpha \times \varepsilon$ 2D maps
 - Estimated with the width of the $1/\langle \alpha \times \varepsilon \rangle$
- Due to data/MC discrepancy
 - Data/MC ratio from sPlot method are used to re-weight the MC distribution

B⁰_s/B⁺ systematic uncertainty

	\mathbf{B}^+			$\mathrm{B_s^0}$				
B meson p_T (GeV/c)	7-10	10–15	15–20	20-50	7–10	10–15	15–20	20-50
Muon efficiency	+7.2	+4.3	+3.8	+3.9	+8.9	+6.0	+3.7	+3.9
	-6.3	-3.9	-3.5	-3.6	-7.5	-5.2	-3.5	-3.6
Data/MC agreement	4.2	15	3.0	1.7	35	5.6	4.7	10
MC sample size	9.1	3.2	1.9	1.4	27	6.3	3.1	3.2
Fit modeling	4.5	2.7	2.8	2.6	1.2	3.8	1.8	6.4
Tracking efficiency	5.0	5.0	5.0	5.0	10	10	10	10
T_{AA}	2.2				2.2			
$N_{\rm MB}$	1.3				1.3			
Branching fraction	2.9			7.5				
Total	+15	+17	+8.7	+ 8.2	+47	+17	+15	+18
	-14	-17	-8.5	-8.0	-47	-17	-14	-18

• Data/MC disagreement from reweighted $\alpha \times \varepsilon$ using the sPlot method

		B^+			B_s^0	
Centrality class	0–30%	30-90%	0–90%	0–30%	30–90%	0–90%
Muon efficiency	+4.2	+4.1	+4.2	+5.5	+4.6	+5.3
	-3.8	-3.8	-3.8	-4.9	-4.2	-4.7
Data/MC agreement	13	8.0	12	3.1	3.7	3.2
MC sample size	3.2	2.2	2.4	6.6	2.3	4.4
Fit modeling	2.5	2.8	2.6	2.5	3.2	2.3
Tracking efficiency	5.0	5.0	5.0	10	10	10
T _{AA}	2.0	3.6	2.2	2.0	3.6	2.2
$N_{\rm MB}$		1.3			1.3	
Branching fraction		2.9			7.5	
Total	+16	+12	+15	+16	+15	+15
	-15	-12	-15	-16	-15	-15

B_s^0/B^+ production yield calculation

$$\frac{1}{T_{AA}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\mathscr{B}N_{\mathrm{MB}}T_{AA}}\frac{N_{\mathrm{obs}}(p_{\mathrm{T}})}{\Delta p_{\mathrm{T}}} \times \left\langle \frac{1}{\alpha(p_{\mathrm{T}}, y) \times \varepsilon(p_{\mathrm{T}}, y)} \right\rangle$$

- 1/2: raw yield measured with particles and antiparticles
- $T_{AA} = (5.6 \pm 0.2) \text{ mb}^{-1}$: nuclear overlapping function [Phys. Rev. C 97 (2018), no.5, 054910]
 - NN-equivalent integrated luminosity per heavy ion collision
- Acceptance and efficiency corrected using a fine (p_T, y) 2D map
- Efficiency map corrected by data/MC scale factors with *tag-and-probe* (with J/ψ)

- $\cdot \,\, m_{\mu^-\mu^+}$ in J/ ψ mass range or sideband region (for background estimation)
- $\cdot\,$ Both candidates in the studied mass regions are kept
 - + Weighted by the probability of being a true J/ ψ
- Probability of the 3μ vertex
- Significance of the vertex displacement from PV
- \cdot Angle between $p_{3\mu}$ and ${
 m B}^+_{
 m c}$ flight direction
- Sum of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$ between the 3 muon pairs

Iterative efficiency correction

- $\cdot p_{T}$ differential analysis with original MC
- Correct single- μ eff. with tag and probe
- Corrected yields fitted to correct $p_{ au}^{3\mu}$ spectrum of the MC
- \cdot Perform a second run of the analysis to correct the $p_{ extsf{T}}^{3\mu}$ spectrum again

- \cdot Fraction of signal MC 3 μ passing the entire analysis chain
- \cdot Single- μ efficiency corrected with *tag-and-probe*, using J/ ψ
- · Acceptance and efficiency are corrected iteratively
 - $\cdot p_{T}$ differential analysis
 - Corrected yields fitted to correct $p_{\mathrm{T}}^{3\mu}$ spectrum of the MC
 - Perform a second run of the analysis

uncertainty	рр	PbPb
fit	5%-9%	17%-31%
single-muon efficiency	2%-5%	2%-5%
acceptance and efficiency	10%	25%
bg contamination	4.5%	4.5%