## Studies of heavy quark dynamics using $B$ mesons with the CMS detector

HP 2023

Tzu-An Sheng<br>for the CMS Collaboration

PLB 829 (2022) 137062
PRL 128 (2022) 252301
Mar. 302023


## Introduction

## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$ratio: strangeness enhancement

## Double ratio, 2015 data



- Enhanced strangeness predicted for $p_{\top}<15 \mathrm{GeV}$ in deconfined medium [Phys.Lett.B 595 (2004) 202-208,
Phys.Lett.B 735 (2014) 445-450]
- Heavy b, c quarks produced at initial hard scattering, recombining with nearby constituent quarks into hadrons
- This talk: 2018 data, 3 times more statistics compared to 2015 $\mathrm{B}^{+}$and $\mathrm{B}_{\mathrm{s}}^{0}$ samples

[^0]
## $\mathrm{B}_{\mathrm{c}}^{+}$: a bridge between charmonia and bottomonia

- Quarkonia: Recombination of heavy quarks in QGP at low $p_{\top}$
- Sequential melting w.r..t binding energies: QGP thermometer Phys.Rev.C 63 (2001) 054005
- Intermediate binding energy of $\mathrm{B}_{\mathrm{c}}^{+}$
- 0.64 GeV $(\mathrm{J} / \psi)<0.87 \mathrm{GeV}\left(\mathrm{B}_{\mathrm{c}}^{+}\right)<1.10 \mathrm{GeV}(\mathrm{Y}(2 \mathrm{~S}))$
- Sensitive to dissociation + recombination
- Recombination process of $b$ with an uncorrelated c in QGP
- May be more prominent than J/ $\psi$ due to its small cross section


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$event selection

$$
\begin{aligned}
& \mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} \rightarrow \mu^{-} \mu^{+} \mathrm{K}^{+} \\
& \mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi(1020) \rightarrow \mu^{-} \mu^{+} \mathrm{K}^{+} \mathrm{K}^{-}
\end{aligned}
$$

- Long-lived B mesons $\rightarrow$ large flight length
- Angle between B flight direction and PV-SV displacement $\cos \theta=\hat{r}_{\mathrm{B}, \text { flight }} \cdot \hat{p}_{\mathrm{T}, \text { Reco }}$ Expect $\hat{p}_{\mathrm{T}, \text { reco }} \| \hat{r}_{\mathrm{B}, \text { fight }}$
- $x^{2}$ Probability of the decay vertex
- $p_{\top}$ of the daughter tracks


## Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
- Select on each variable sequentially in a tree structure
- Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events




## Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
- Select on each variable sequentially in a tree structure
- Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events


- Training samples: signal MC vs side-band data


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$Yield extraction




- First $50+$ observation of $\mathrm{B}_{\mathrm{s}}^{0}$ in PbPb collision
- $\mathrm{B}^{+}$(semi) peaking background:
- Partially reconstructed B decay (e.g. $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi\left(\mathrm{K}^{*} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)$
- misidentified $\pi$ in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$


## $\mathrm{B}_{\mathrm{s}}^{0}$ and $\mathrm{B}^{+}$cross sections



- Enhanced yields in PbPb at low $p_{\top}$ and high centrality
- Dominant uncertainty:
- Data/MC disagreement on selection variables (BDT score)
- Tracking efficiency


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$yield ratio

$$
\mathrm{B}_{\mathrm{S}}^{0} / \mathrm{B}^{+} \text {vS } p_{\mathrm{T}}
$$



$$
\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+} \text {vs centrality }
$$



both plots: PLB 829 (2022) 137062

- Compatible with PbPb recombination models
- Compatible with pp data
- Indicate higher $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$ratio in central events but not significant


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$yield ratio compared with charm



PLB 829 (2022) 137062
CMS-PAS-HIN-18-017
PLB 827 (2022) 136986

- Similar magnitudes of $\mathrm{D}_{\mathrm{s}} / \mathrm{D}^{0}$ and $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$


## $\mathrm{B}_{\mathrm{c}}^{+}$signal: trimuon semi-leptonic decays



- $m_{\mathrm{J} / \psi}+m_{\mu} \simeq 3.2 \mathrm{GeV}<m_{3 \mu}<6.3 \mathrm{GeV} \simeq m_{\mathrm{B}_{\mathrm{C}}}$
- $\mu^{+} \mu^{+} \mu^{-}$final states: $2 \mathrm{~J} / \psi$ candidates from opposite-sign $\left(\mu^{+}, \mu^{-}\right)$ combinations


## 3 main backgrounds of $\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J} / \psi \mu^{+} v_{\mu}$



## 3 main backgrounds of $\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J} / \psi \mu^{+} \nu_{\mu}$



- rotated $\mathrm{J} / \psi+\mathrm{X}$
- Estimated by rotating J/ $\psi$ candidates around the PV
- B $\rightarrow \mathrm{J} / \psi+\mathrm{X}$
- Estimated with simulation
- Fake J/ $\psi+X$
- Estimated from data by interpolating dimuon mass sidebands


## $\mathrm{B}_{\mathrm{c}}^{+}$event selection with BDT

BDT discriminating variables

- $p_{\mathrm{T}}$ imbalance between $\mathrm{J} / \psi$ and the 3 rd $\mu$
- Ratio of angular distance $\Delta R$ between $\mathrm{J} / \psi$ and another $2 \mu$ pair
- Significance of the $3 r d$ vertex displacement from the PV
- 5 other variables from event selections (see slide 22)

BDT selection: $99.9 \%$ signal MC efficiency

## Trimuon template fit



- rotated $\mathrm{J} / \psi+X$ : rotating $\mathrm{J} / \psi$ candidates around the PV
- $\mathrm{B} \rightarrow \mathrm{J} / \psi+\mathrm{X}$ : simulation
- Fake $\mathrm{J} / \psi+X$ : interpolating dimuon mass sidebands from data


## $\mathrm{B}_{\mathrm{c}}^{+}$meson production



- Enhanced PbPb yield at low $p_{\mathrm{T}}$, suppressed at high $p_{\top}$ compared to pp result
- Dominant uncertainty: fit, acceptance and efficiency

PRL 128 (2022) 252301

## $\mathrm{B}_{\mathrm{c}}^{+}$meson nuclear modification factor

$$
\mathrm{R}_{A A} \text { vS } p_{\mathrm{T}}
$$

$\mathrm{R}_{\mathrm{AA}}$ VS centrality


- Moderate suppression at high $p_{\top}$
- $R_{\text {AA }}$ at low $p_{\mathrm{T}}$ higher than unity ( $1 \sigma$ ) and high $p_{\top}(1.6 \sigma)$
- Does not significantly depend on centrality


## $\mathrm{B}_{\mathrm{c}}^{+} R_{\mathrm{AA}}$ Compared to theory



## arXiv:2302.11511

- Compatible with recombination models at different $\mathrm{B}_{\mathrm{c}}^{+}$ production cross sections in $p p$
- Top: Instantaneous Coalescence Model
- Can account for off-equilibrium (non-thermalized) quark spectra
- Middle/Bottom: Resonance Recombination Model
- conserves 4-momentum, recovers the equilibrium limit for equilibrated HQ input distributions
- Middle: with space momentum correlations between the coalescing quarks
- Enhanced recombination of fast-moving heavy quarks with high-flow thermal quark


## $\mathrm{B}_{\mathrm{c}}^{+} R_{\mathrm{AA}}$ Compared to charged hadron, $\mathrm{D}^{0}$ and B



- Low $p_{\mathrm{T}}: R_{\mathrm{AA}}$ higher than charged hadron and $\mathrm{B}^{+}$
- High $p_{\mathrm{T}}$ : similar suppression
- Converge at $p_{\top}>20 \mathrm{GeV}$
- Mass-dependent medium modification (e.g. hadronization, dead cone) reduces at high $p_{\mathrm{T}}$


## $\mathrm{B}_{\mathrm{c}}^{+} R_{\mathrm{AA}}$ Compared to quarkonia



- Recombination of c and b could increase $R_{\text {AA }}$
- Need more statistics at low $p_{\top}$


## Summary

## Updated $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$ratio with the 2018 CMS data

- First observation of $\mathrm{B}_{\mathrm{s}}^{0}>5 \sigma$ in PbPb collision
- Enhancement at low $p_{\mathrm{T}}$ but not significant with the current precision
$\mathrm{B}_{\mathrm{c}}^{+}$measurement
- First observation of $\mathrm{B}_{\mathrm{c}}^{+}>5 \sigma$ in PbPb collision
- Low- $p_{\mathrm{T}}$ enhancement indicates stronger $\mathrm{B}_{\mathrm{c}}^{+}$recombination


Backup

## Muon selection for $\mathrm{B}^{+} / \mathrm{B}_{\mathrm{s}}^{0}$

- $p_{T}^{\mu}>3.5$ for $\left|\eta^{\mu}\right|<1.2$
- $p_{T}^{\mu}>1.5$ for $2.1<\left|\eta^{\mu}\right|<2.4$
- $\eta_{T}^{\mu}>\left(5.47-1.89\left|\eta^{\mu}\right|\right)$ for $1.2<\left|\eta^{\mu}\right|<2.1$
- $m_{\mu^{-} \mu^{+}}$in $\mathrm{J} / \psi$ or $\phi$ range
- Probability of $2 \mu$ fitted to a common vertex


## Systematic uncertainty for $\mathrm{B}^{+} / \mathrm{B}_{\mathrm{s}}^{0}$

- Due to fit modeling
- Signal variation: 3-Gaussian, 10\% variation of its width, fixing common mean to MC
- Background variation: low-order polynomial for combinatorial background
- Estimated with squared sum of maximum variations
- Due to limited MC sample size
- 1000 generated $\alpha \times \varepsilon$ 2D maps
- Estimated with the width of the $1 /\langle\alpha \times \varepsilon\rangle$
- Due to data/MC discrepancy
- Data/MC ratio from sPlot method are used to re-weight the MC distribution


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$systematic uncertainty

|  | $\mathrm{B}^{+}$ |  |  |  | $\mathrm{B}_{\mathrm{s}}^{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B meson $p_{T}(\mathrm{GeV} / \mathrm{c})$ | 7-10 | 10-15 | 15-20 | 20-50 | 7-10 | 10-15 | 15-20 | 20-50 |
|  | +7.2 | +4.3 | +3.8 | +3.9 | +8.9 | $+6.0$ | +3.7 | +3.9 |
| Muon efficiency | -6.3 | -3.9 | -3.5 | -3.6 | -7.5 | -5.2 | -3.5 | -3.6 |
| Data/MC agreement | 4.2 | 15 | 3.0 | 1.7 | 35 | 5.6 | 4.7 | 10 |
| MC sample size | 9.1 | 3.2 | 1.9 | 1.4 | 27 | 6.3 | 3.1 | 3.2 |
| Fit modeling | 4.5 | 2.7 | 2.8 | 2.6 | 1.2 | 3.8 | 1.8 | 6.4 |
| Tracking efficiency | 5.0 | 5.0 | 5.0 | 5.0 | 10 | 10 | 10 | 10 |
| $T_{\text {AA }}$ |  |  | 2 |  |  |  |  |  |
| $N_{\text {MB }}$ |  |  | 3 |  |  |  | 3 |  |
| Branching fraction |  |  | 9 |  |  |  |  |  |
| Total | +15 | +17 | +8.7 | $+8.2$ | +47 | +17 | +15 | +18 |
| Total | -14 | -17 | -8.5 | -8.0 | -47 | -17 | -14 | -18 |

- Data/MC disagreement from reweighted $\alpha \times \varepsilon$ using the sPlot method


## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$systematic uncertainty

|  | $\mathrm{B}^{+}$ |  |  | $\mathrm{B}_{\mathrm{s}}^{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centrality class | 0-30\% | 30-90\% | 0-90\% | 0-30\% | 30-90\% | 0-90\% |
|  | +4.2 | +4.1 | +4.2 | +5.5 | +4.6 | +5.3 |
| Muon efficiency | -3.8 | -3.8 | -3.8 | -4.9 | -4.2 | -4.7 |
| Data/MC agreement | 13 | 8.0 | 12 | 3.1 | 3.7 | 3.2 |
| MC sample size | 3.2 | 2.2 | 2.4 | 6.6 | 2.3 | 4.4 |
| Fit modeling | 2.5 | 2.8 | 2.6 | 2.5 | 3.2 | 2.3 |
| Tracking efficiency | 5.0 | 5.0 | 5.0 | 10 | 10 | 10 |
| $T_{\text {AA }}$ | 2.0 | 3.6 | 2.2 | 2.0 | 3.6 | 2.2 |
| $N_{\text {MB }}$ |  | 1.3 |  |  | 1.3 |  |
| Branching fraction |  | 2.9 |  |  | 7.5 |  |
| Total | +16 | +12 | +15 | +16 | +15 | +15 |
| Total | -15 | -12 | -15 | -16 | -15 | -15 |

## $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}^{+}$production yield calculation

$$
\frac{1}{T_{A A}} \frac{\mathrm{~d} N}{\mathrm{~d} p_{\mathrm{T}}}=\frac{1}{2 \mathscr{B} N_{\mathrm{MB}} T_{A A}} \frac{N_{\mathrm{obs}}\left(p_{\mathrm{T}}\right)}{\Delta p_{\mathrm{T}}} \times\left\langle\frac{1}{\alpha\left(p_{\mathrm{T}}, y\right) \times \varepsilon\left(p_{\mathrm{T}}, y\right)}\right\rangle
$$

- 1/2: raw yield measured with particles and antiparticles
- $T_{A A}=(5.6 \pm 0.2) \mathrm{mb}^{-1}$ : nuclear overlapping function [Phys. Rev. C 97 (2018), no.5, 054910]
- NN-equivalent integrated luminosity per heavy ion collision
- Acceptance and efficiency corrected using a fine ( $p_{T}, y$ ) 2D map
- Efficiency map corrected by data/MC scale factors with tag-and-probe (with J/ $\psi$ )


## $\mathrm{B}_{\mathrm{c}}^{+}$offline selections

- $m_{\mu^{-} \mu^{+}}$in J/ $\psi$ mass range or sideband region (for background estimation)
- Both candidates in the studied mass regions are kept
- Weighted by the probability of being a true J/ $\psi$
- Probability of the $3 \mu$ vertex
- Significance of the vertex displacement from PV
- Angle between $p_{3 \mu}$ and $\mathrm{B}_{\mathrm{c}}^{+}$flight direction
- Sum of $\Delta R=\sqrt{\Delta \eta^{2}+\Delta \varphi^{2}}$ between the 3 muon pairs
- Iterative efficiency correction
- $p_{\mathrm{T}}$ differential analysis with original MC
- Correct single- $\mu$ eff. with tag and probe
- Corrected yields fitted to correct $p_{T}^{3 \mu}$ spectrum of the MC
- Perform a second run of the analysis to correct the $p_{\uparrow}^{3 \mu}$ spectrum again


## Acceptance and efficiency correction for $\mathrm{B}_{\mathrm{c}}^{+}$

- Fraction of signal MC $3 \mu$ passing the entire analysis chain
- Single- $\mu$ efficiency corrected with tag-and-probe, using J/ $\psi$
- Acceptance and efficiency are corrected iteratively
- $p_{\mathrm{T}}$ differential analysis
- Corrected yields fitted to correct $p_{\mathrm{T}}^{3 \mu}$ spectrum of the MC
- Perform a second run of the analysis


## Systematic uncertainty for $\mathrm{B}_{\mathrm{c}}^{+}$

| uncertainty | pp | PbPb |
| :--- | :--- | :--- |
| fit | $5 \%-9 \%$ | $17 \%-31 \%$ |
| single-muon efficiency | $2 \%-5 \%$ | $2 \%-5 \%$ |
| acceptance and efficiency | $10 \%$ | $25 \%$ |
| bg contamination | $4.5 \%$ | $4.5 \%$ |


[^0]:    B $^{+}$: PRL 119, 152301
    $\mathrm{B}_{\mathrm{s}}^{0}$ : PLB 796 (2019) 168

