

The measurements of J/ ψ production in Pb—Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE

Pengzhong Lu (for the ALICE Collaboration)

University of Science and Technology of China GSI Helmholtzzentrum für Schwerionenforschung GmbH

Hard Probes 2023, 28th March 2023

J/ψ -- excellent probe of the medium

Probe of the QGP:

- ✓ Bound state of $c\bar{c}$
- Charm quarks produced early in the collisions and go through the whole evolution of the QGP
- ✓ Prompt and non-prompt J/ ψ reflect medium effects on charm and beauty quarks respectively

Pengzhong Lu - HP2023 - 28.03.2023

J/ψ -- excellent probe of the medium

Probe of the QGP:

- ✓ Prompt J/ ψ is sensitive to:
 - * color screening [1] and dynamic dissociation [2] (suppression)
 - * regeneration [3][4], which compete with suppression

T. Matsui and H. Satz, Phys. Lett. B178 (1986) 416–422
 Y. Liu, N. Xu, P. Zhuang, Phys. Lett. 724, 73–76 (2013)
 Braun-Munzinger, P., Stachel, J., Nature 448, 302–309 (2007)
 Du, X. & Rapp, R., Nuclear Physics A 943, 147–158 (2015)
 Andronic, A. et al., Eur. Phys. J. C 76, 107 (2016)

Probe of the QGP: gluon u / d / s quark 8

10

 $< E_{col.} > (GeV)$

[6]

- Prompt J/ ψ is sensitive to: \checkmark
 - color screening and dynamic dissociation *
 - regeneration, compete with suppression *
 - * reflects charm quark energy loss
- Non-prompt J/ ψ : \checkmark
 - reflects beauty quark energy loss *
 - mass dependent parton energy loss [6] in the QGP *

 J/ψ -- excellent probe of the medium

3

t (fm)

2

t (fm)

ALICE Detector (Run 2)

 \circledast Inclusive J/ ψ can be measured down to zero p_{T} both at mid- and forward rapidity

Separate prompt and non-prompt components at midrapidity

Separation of prompt and non-prompt J/ ψ at midrapidity

2D maximization likelihood fitting method:

 $m_{e^+e^-}$ and pseudo-proper decay length (x)

 $\circledast p_T > 0.15$ (0.3) GeV/c at central (forward) rapidity to reject J/ ψ yield from photoproduction

- * Model uncertainties are mainly from the total charm cross section and cold nuclear matter effects (CNM)
- * Both transport models describe measurements in central collisions at mid- and forward rapidity
- \circledast SHMc agrees with data at low $p_{\scriptscriptstyle T}$ very well, underestimates the yields at high $p_{\scriptscriptstyle T}$

Pengzhong Lu - HP2023 - 28.03.2023

- Solution Models that include QGP melting and regeneration are able to describe the measurements as a function of $\langle N_{part} \rangle$
- More regeneration at midrapidity due to the larger charm quark density

Pengzhong Lu - HP2023 - 28.03.2023

- * Models can describe the measurements both at mid- and forward rapidity
- \circledast SHMc model can describe the measurements for $p_{\rm T}$ < 5 GeV/c
- \circledast Transport models provide good description of the data for the full $p_{\rm T}$ range
- \circledast Model from Arleo et al. (only include energy loss) can describe data for $p_{\rm T}$ > 10 GeV/c

 [4] Du, X. & Rapp, R., Nuclear Physics A 943, 147–158 (2015)

 [6] ALICE, arXiv:2303.13361

 [9] Andronic, A., Braun-Munzinger, P, et al, Physics Letters B 797, 134836 (2019)

 [8] Zhou, K., Xu, N., Xu, Z. & Zhuang, P., Phys. Rev. C 89, 054911 (2014)

 [10] F. Arleo, Phys. Rev. Lett. 119 (2017) 062302

J/ψ to D⁰ yield ratio at midrapidity

10

- Probe the charm hadronization mechanism
 - ✓ sensitive to the charm fugacity ($g_{\rm c}$)
- $\ensuremath{\,\otimes\,}$ Larger ratio in central collisions due to the larger $g_{\rm c}$
- Common experimental (theoretical) uncertainties cancel
- Non-prompt J/ ψ contributes by ~ 10-20% to the inclusive J/ ψ yield, depending on the centrality

[7] ALICE, arXiv:2303.13361[9] Andronic, A., Braun-Munzinger, P, et al, Physics Letters B 797, 134836 (2019)

Non-prompt J/ ψ yield fraction

- \circledast Improved precision compared to $\sqrt{s_{\rm NN}}$ = 2.76 TeV
- ❀ A slightly decreasing trend towards central collisions
- \circledast ALICE extends results to low p_{T} , and agrees with the trend observed by CMS

Prompt J/ ψ -- $R_{\rm AA}$ vs. $\langle N_{\rm part} \rangle$ and $p_{\rm T}$

 \circledast Increasing trend for R_{AA} towards central collisions (left) and low p_{T} (right)

Expected from regeneration mechanism

Prompt J/ ψ -- centrality dependence of $R_{\rm AA}$ vs. $p_{\rm T}$

 \circledast ALICE extends measurements to very low p_{T}

- Models are computed for the
- ALICE acceptance and cuts

- ${\ensuremath{\mathfrak{B}}}$ Increasing trend towards low p_{T} in central collisions
- ${\ensuremath{\,\otimes }}$ At high $p_{{\ensuremath{\, \mathrm{T}}}}$, compatible with ATLAS and CMS results in the overlapping range
- $\circledast\,$ Good agreement with SHMc model for $p_{\rm T}$ < 5 GeV/c
- \circledast Compatible with the model by Vitev et al. for $p_T > 5$ GeV/c in central collisions

Non-prompt J/ ψ -- R_{AA} vs. $\langle N_{part} \rangle$

Indicates stronger suppression towards central collisions

ℜ Expected from heavy quark energy loss effects in the medium

Non-prompt J/ ψ -- centrality dependence of $R_{\rm AA}$ vs. $p_{\rm T}$

- \circledast Similar $R_{
 m AA}$ trend for non-prompt D⁰ and non-prompt J/ ψ
 - ✓ strong suppression for $p_{\rm T}$ > 5 GeV/c, increasing trend towards low $p_{\rm T}$
 - $\checkmark\,$ differences can arise due to decay kinematics
- ***** Consistent with energy loss models including collisional and radiative contributions
- \circledast ALICE extends the J/ ψ measurement to very low $p_{_{
 m T}}$, and is complementary to ATLAS and CMS

ALICE opportunities for J/ ψ measurements in Run 3

- Major detectors upgrades and new detectors
- Machine learning is under developments to analyze Run 3 data
- ${old transformations}$ Opportunities for more precise or new J/ ψ measurements
 - \checkmark prompt and non-prompt separation at forward rapidity
 - ✓ collective flow, polarization at midrapidity...

ML base selections

0.4

0.2

ALI-PERF-508681

2

s/b -- ML vs. SM

Summary

- lpha ALICE extends inclusive (prompt and non-prompt) J/ ψ Pb—Pb measurement down to zero (low) $p_{ au}$
- lpha Models which include regeneration describe inclusive J/ ψ and prompt J/ ψ production
 - regeneration mainly at low $p_{\rm T}$, significant suppression at high $p_{\rm T}$
- * Prompt J/ ψ suppression at high p_{τ} can be reproduced by models including collisional and thermal dissociation
- ${old H}$ Non-prompt J/ ψ indicates stronger suppression towards central collisions
 - \checkmark compatible above 5 GeV/c with models implementing mass dependent quark energy loss
- \circledast SHMc describes the J/ ψ /D⁰ yield ratio vs. centrality
- \circledast ALICE Run 3 provides excellent opportunities for more precise and new J/ ψ measurements

J/ ψ Results presented at Hard Probes 2023

Talks:

- \circledast J/ ψ photoproduction in Pb—Pb collisions with nuclear overlap, lonut Arsene (link)
- Relation in small systems, Ailec Hechavarria (link)
- Quarkonium polarization in pp and Pb—Pb collisions, Andrea Ferrero (<u>link</u>)
- $\circledast \psi(2s)$ production in Pb—Pb, Victor Feuillard (<u>link</u>)

Posters:

- * J/ ψ photoproduction and exclusive dimuon production in p—Pb collisions at 8.16 TeV, Minjung Kim and Michael Winn (link)
- **Real Reproduction and flow in small systems, Tabea Eder (link)**