

Quarkonium polarisation in pp and Pb-Pb collisions

Hard Probes 2023, March 30th 2023

Introduction to vector meson polarisation

EPJC 69 (657-673), 2010, Faccioli et al.

Introduction to vector meson polarisation

Quarkonium polarisation in pp and Pb-Pb collisions

ALICE

<u>Motivation</u>: polarisation provides information complementary to differential cross-section measurements

 Additional contraints to the description of quarkonium production mechanism in hadronic collisions

EPJC 69 (657-673), 2010, Faccioli et al.

Before LHC results: different theoretical predictions at NLO • <u>NRQCD</u> $->\lambda_{\theta} > 0$ • <u>Color Singlet Model</u> $->\lambda_{\theta} < 0$

Phys. Rev. Lett. 108, 172002, Butenschoen et al.

Choice of the reference polarisation directions:

- Helicity (HE): quarkonium direction in the centerof-mass of the colliding beams
- Collins-Soper (CS): bisector of the angle between the colliding beams in the quarkonium rest frame
- HE and CS perpendicular in the limit $p_{\rm T}\gg |p_{\rm L}|$

Quarkonium polarisation in pp and Pb-Pb collisions

<u>Motivation</u>: large magnetic field (\overrightarrow{B}) and angular momentum (\overrightarrow{L}) produced in the QGP formation, perpendicular to the event plane

—> Might influence the polarisation of quarkonia originating from the early phases of QGP formation

Choice of the reference polarisation directions:

- Helicity (HE): Quarkonium direction in the center-of-mass of the colliding beams
- Collins-Soper (CS): bisector of the angle between the colliding beams in the Quarkonium rest frame
- Event Plane (EP): direction orthogonal to the event plane in the center-of-mass of the colliding beams

Magnetic field \overrightarrow{B} :

- Huge intensity ($|\vec{B}| \sim 10^{14}$ T)
- Short lived ($\tau \sim 1 \text{ fm/}c$)

NPA 803 (2008), Kharzeev et al.

Angular momentum \vec{L} :

- Highest in semi-central collisions ($b \sim 2 \text{ fm}$)
- Affects the system evolution up to the freeze-out
 <u>PRC 77 (2008) 024906</u>, Becattini et al.

INFN

Forward muons detection in ALICE RUN 2

Quarkonium polarisation in pp collisions

Inclusive J/ψ polarisation in pp collisions

Polarisation measured in pp collisions in the **CS** and **HE** frames

No significant polarisation observed by **ALICE** and **LHCb** at forward rapidity

Data samples:

- ALICE $\sqrt{s} = 7$ TeV (2010)
- ALICE $\sqrt{s} = 8$ TeV (2012)

• LHCb
$$\sqrt{s} = 7$$
 TeV (2011)

ALICF

Inclusive J/ψ polarisation in pp collisions

Significant theoretical work to describe the recent results

- General agreement between predictions
- zero or small λ_{θ} predicted in the whole $p_{\rm T}$ range

16

$\Upsilon(1S)$ polarisation in pp collisions

Recent preliminary measurement of polarisation at \sqrt{s} = 13 TeV from ALICE

- Results compatible with previous LHCb measurements at $\sqrt{s} = 8$ TeV
- Polarisation evaluated down to ~zero $p_{\rm T}$
- All values compatible with zero within uncertainties
- Limited by the statistical precision

JHEP 12 (2017) 110,

Preliminary

$\Upsilon(nS)$ production cross-section in pp collisions

Preliminary measurement of $\Upsilon(nS)$ production cross-sections at $\sqrt{s} = 13$ TeV compared to LHCb results

Quarkonium polarisation in Pb-Pb collisions

J/ψ polarisation in Pb-Pb collisions

ALICE measurement of J/ψ polarisation in **Pb-Pb collisions** at $\sqrt{s_{NN}} = 5.02$ TeV Helicity (**HE**) and Collins-Soper (**CS**) reference frames

- λ_{θ} shows a 2 σ deviation from zero at intermediate $p_{\rm T}$
 - Present in both HE and CS frames
 - 3*σ* deviation from LHCb measurement in pp collisions in the Helicity frame
- Values compatible with ALICE results in pp collisions within uncertainties
- Can this be explained by Cold Nuclear Matter (CNM) effects?

 PLB 815 (2021) 136146 EPJC 78 (2018) 562

 EPJC 73 (2013) 11

J/ψ polarisation in Pb-Pb collisions

ALICE measurement of J/ψ polarisation in **Pb-Pb collisions** at $\sqrt{s_{NN}} = 5.02$ TeV Helicity (**HE**) and Collins-Soper (**CS**) reference frames, **compared to pp data**

- Improved Color Evaporation
 <u>Model</u> (ICEM)
 - No Hot Nuclear Matter effects
 - Direct J/ψ only (no feed-down)
 - CNM effects only in Pb-Pb
- Small difference between pp and Pb-Pb collisions
- CNM effects not contributing significantly to the polarisation

PRC 105, 055202, Cheung, Vogt

ALICE

J/ψ polarisation in Pb-Pb collisions

ALICE measurement of J/ψ polarisation in **Pb-Pb collisions** at $\sqrt{s_{NN}} = 5.02$ TeV

First measurement with respect to the Event Plane (EP)

• Small but significant polarisation, particularly in the 40-60% centrality range (3 σ effect)

 χ_{EP}

EVENT-PLANE

- Effect more pronounced at low transverse momentum (2 < $p_{\rm T}$ < 4 GeV/c)
- Qualitatively in agreement with spin alignment observed for light vector mesons
 <u>PRL 125 (2020) 012301</u>
- Theoretical models needed to distinguish between possible \overrightarrow{B} and \overrightarrow{L} contributions

ALICE muon spectrometer in Run 3

- Readout electronics upgrade for higher data rates:
 - Pb-Pb collisions at 50 kHz \rightarrow ~10x more statistics (13 nb^{-1} projected Run 3+4)
 - pp collisions at 500 kHz —> ~100x more statistics
 - Enhancement of low statistics signals ($\psi(2S), \Upsilon, ...$)
- Forward silicon-based tracker (MFT)
 - Detection of <u>displaced charmonia decays</u> (prompt/non-prompt separation)
 - Better matching with interaction point

MUON Forward Tracker (MFT)

Readout electronics upgrade « Trigger-less » continuous readout High rate capabilities

ALICE

- ALICE has extensively measured the quarkonium polarisation in both pp and Pb-Pb collisions
- No significant J/ψ and $\Upsilon(1S)$ polarisation observed in pp collisions
- Results compatible with other LHC measurements and recent model predictions
- Interesting dynamics emerging from **Pb-Pb data**:
 - Hint for non-zero λ_{θ} values at intermediate p_{T} in the HE and CS frames
 - Not explained by Cold Nuclear Matter (CNM) effects
 - 3σ deviation from zero of λ_{θ} along the **normal to the event plane**
 - * Possible correlation with \overrightarrow{B} and \overrightarrow{L} in the formed QGP

BAKUP SLIDES

