Heavy-flavour leptons and non-prompt D mesons to investigate beauty-quark interaction in the QGP with ALICE

Martin Völkl on behalf of the ALICE Collaboration

Universität Heidelberg

2023-03-29

11th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Martin Völkl Uni Heidelbe

Non-prompt D mesons and leptons

2023-03-29 1 / 17

Modeling of quark-medium interactions

Can distinguish elastic and radiative processes

- Collisional processes more important at low $p_{\rm T}$
- Larger energy loss for lower mass quarks expected

HF Hadronization: Annalena Kalteyer 28.3., 16:50

- Hadronization which particle species is produced and at which momentum?
- Fragmentation: other valence quarks created from vacuum
- Recombination: other valence quarks from medium

Martin Völkl Uni Heidelberg

2023-03-29 2 / 17

Heavy quarks throughout a heavy-ion collision

Initial hard scatterings \rightarrow Pre-equilibrium \rightarrow | QGP evolution | \rightarrow | Freeze-out | \rightarrow Hadronic phase

- Important measurements: nuclear modification factors R_{AA} and flow coefficients v_n
- Typically: suppression at high $p_{\rm T}$ from energy loss; peak at low $p_{\rm T}$ from radial flow
- Affected by transport, but also nPDFs, shadowing and hadronization
- Expected QGP signatures: anisotropic flow, modification of p_{T} distributions

 $non-prompt \Leftrightarrow feeddown$ from beauty hadrons

Heavy guarks throughout a heavy-ion collision

- Affected by transport, but also nPDFs, shadowing and hadronization ۰
- Expected QGP signatures: anisotropic flow, modification of $p_{\rm T}$ distributions

non-prompt from beauty hadrons

The ALICE detector

Measurements at midrapidity $(|\eta| < 0.8)$:

- Inner Tracking System: tracking and reconstruction of primary vertex and track impact parameter
- Time Projection Chamber: tracking and particle identification via d*E*/dx
- Time-Of-Flight Detector: particle Identification

For heavy–flavour decay muon measurements $(-4 < \eta < -2.5)$:

• Muon spectrometer: triggering and tracking

D meson measurements

- Measurements based on invariant mass distributions
- Extraction via fit of signal and background
- Background suppressed by ALICE PID capabilities

D meson measurements

- Measurements based on invariant mass distributions
- Extraction via fit of signal and background
- Background suppressed by ALICE PID capabilities
- Good reconstruction even at low $p_{\rm T}$ in central Pb–Pb collisions

- Separate prompt and non-prompt: impact parameter, decay length, pointing angle etc.
- \bullet Also include PID variables \rightarrow suppress stochastic background
- Find selection criteria using machine learning (ML) like XGboost, efficiencies from MC simulations
- Estimate prompt and non-prompt fraction in full sample from cut variations

See also poster by Mingyu Zhang

- Electrons from
 - charm hadron decays $(c \rightarrow e)$
 - beauty hadron decays $(b(\rightarrow c) \rightarrow e)$
 - photon conversions $(\gamma \rightarrow e^+e^-)$
 - others (e.g. $\pi^0 \rightarrow \gamma e^+ e^-$)
- Separated by impact parameter distribution
- Contribution of photon conversions and Dalitz decays can be constrained from e⁺e⁻ pair invariant mass distribution

- $p_{\rm T}$ -integrated $R_{\rm AA}$ is $1.00 \pm 0.10({\rm stat.}) \pm 0.13({\rm syst.})^{+0.08}_{-0.09}({\rm extr.}) \pm 0.02({\rm norm.})$ (0-10%)
- $\bullet\,$ Prompt-and non-prompt contributions increasingly suppressed towards high $p_{\rm T}$
- ${\ensuremath{\bullet}}$ The measurements have correlated uncertainties \rightarrow largely cancel in ratio

Non-prompt to prompt D^0 nuclear modification factor

- $\bullet\,$ Significantly higher $R_{\rm AA}$ for non-prompt ${\rm D}^0$ mesons than for prompt ones
- Models which describe the ratio include quark mass dependence in energy loss and coalescence

TAMU: Fries and Rapp Phys. Lett. B 735 (2014) 445–450 Cujet3.1: Shi et al. C 43 (2019) 044101 LGR: Li et al. Eur. Phys. J. C 80 (2020) 671 MC@sHQ+EPOS2: Nahrgang et al. Rev. C 89 no. 1, (2014) 014905

Martin Völkl Uni Heidelberg

Yield ratios

• Non-prompt D^+_s may be enhanced compared to D^0 in central collisions

Excited D_s states in pp: Stefano Politanò 29.3., 10:00

TAMU: Fries and Rapp Phys. Lett. B 735 (2014) 445-450

$b \rightarrow e \text{ in Pb-Pb}$ collisions

- Similar R_{AA} for electrons from beauty and charm
- Points to strong interaction with medium

MC@sHQ+EPOS2: Nahrgang et al. Rev. C 89 no. 1, (2014) 014905 PHSD: Song et al. Phys. Rev. C 92 no. 1, (2015) 014910 LIDO: Ke et al. Phys. Rev. C 98 no. 6, (2018) 064901

- Models with QGP phase generally describe measurements
- Different beauty hadron species have similar branching ratios to electrons

Martin Völkl Uni Heidelberg

- $\bullet~\mbox{Significant}$ flow for non-prompt D^0 mesons (and $b \to e)$
- v_2 lower than for prompt D mesons
- Described well by theories including mass-dependent v_2

Martin Völkl Uni Heidelberg

The situation in Pb–Pb collisions

CERN Courier May/Jun 2021

- Indication of strong interactions of beauty quarks with QGP
- Results consistent with expectation of weaker interaction for beauty than for charm quarks
- Fits into picture of quarks interacting with hydrodynamically expanding medium

Muon v_2 from two-particle correlations

- $\bullet~$ Correlate particles at mid-rapidity ($|\eta|<$ 1) with muons in $-4<\eta<-2.5$
- Distribution given relative to random, uncorrelated background
- \bullet Possible flow effects expected to occur for higher multiplicity collisions \to Subtract scaled low-mult. from high-mult. case

- Correlate v₂: 2-particle correlation and 2-particle cumulant methods
- Similar results, possible higher result for correlation method at high p_T
- Hint of higher elliptic flow at backward rapidity

Muons: Theory comparison

ALICE

- AMPT: fluctuating initial conditions+elastic scatterings of partons+hadronization including coalescence+hadronic interactions
- Positive v₂ from anisotropic parton escape (Phys. Lett. B 753 (2016))
- Color-Glass-Condensate (CGC) based model creates elliptic flow at early times due to correlations in initial state

GCG: Zhang et al. Phys. Rev. D 102 no. 3, (2020) 034010 AMPT: Li et al. Phys. Rev. C 99 no. 4, (2019) 044911

Conclusion

- In **Pb–Pb**, *R*_{AA} and *v*₂ point to substantial interaction of beauty quarks with the medium
- Most successful models include collisional and radiative, mass dependent interaction in expanding medium
- In p-Pb, similar to lighter particles: no strong modification of p_T spectra, but substantial collective behavior in flow coefficients
- Different mechanisms might be able to describe effect, but no clear consensus
- In **Run 3**: full reconstruction of beauty hadrons; muons from beauty hadron decays

Appendix

Appendix: Subtracting low mult for cumulant method

• Shows suppression of jet-like contributions

• Small change from hadron v_2 to that of the decay particles

Appendix: Muon elliptic flow contributions

• The GCG-based model does not include contributions from light particle decays

MDI-21M0D-240303