Quarkonia and exotic hadron production in pPb collisions at LHCb

Clara Landesa Gómez on behalf of the LHCb Collaboration 29th March 2023

- 1. Motivation.
 - Why study *p*Pb collisions?
- 2. The LHCb experiment.
 - More than *b*eauty.
- 3. LHCb results in *p*Pb collisions.
 - J/ ψ production at $\sqrt{s_{NN}} = 8$ TeV. Phys. Lett. B774 (2017) 159
 - $\psi(2S)$ production at $\sqrt{s_{NN}} = 5$ TeV. JHEP 03 (2016) 133
 - Υ production at $\sqrt{s_{\rm NN}} = 8$ TeV. <u>JHEP 11 (2018) 194</u>
 - Cross section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ at $\sqrt{s_{NN}} = 8$ TeV. PHYS. REV. C103 (2021) 064905
 - Cross section ratio $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ at $\sqrt{s_{NN}} = 8$ TeV. LHCB-CONF-2022-001
- 4. Summary and outlook.

Content

Motivation. Why study *pPb* collisions?

Cold nuclear matter effects

- nPDFs Nuclear effects on parton densities (shadowing/antishadowing).
- Colour Glass Condensate Saturation at low x.
- Energy loss traversing the nucleus.
- Hadronic comovers.

R Gelis F, et al. 2010. Annu. Rev. Nucl. Part. Sci. 60:463–89

Motivation. Why study *pPb* collisions?

Cold nuclear matter effects	Hot matter				
 nPDFs - Nuclear effects on parton densities (shadowing/antishadowing). Colour Glass Condensate – Saturation at low x. 	Studies with multiplicity show possibility of QGP-droplet in small systems. U				
 Energy loss traversing the nucleus. Hadronic comovers. 	 Quarkonia suppression due to colour screening. Coalescence rises as hadronisation mechanism. Energy loss in plasma? 				

2. The LHCb experiment. More than *b*eauty.

• Fully instrumented forward detector

 $2 < \eta < 5.$

• Excellent tracking, momentum resolution and particle identification.

Clara Landesa Gómez

3. LHCb results in *p*Pb collisions. J/ ψ production at $\sqrt{s_{NN}} = 8$ TeV.

Phys. Lett. B774 (2017) 159

The reconstruction of the candidates is performed through the decay channel:

$$J/\psi \to \mu^+\mu^-$$
, $\mathcal{B} = (5.961 \pm 0.033)\%$.

The pseudo-proper time was used to separate the prompt and non-prompt contribution,

$$t_{z} \equiv \frac{(z_{J/\psi} - z_{\rm PV}) \times M_{J/\psi}}{p_{z}}.$$

Phys. Lett. B774 (2017) 159

3. LHCb results in *p*Pb collisions. J/ ψ production at $\sqrt{s_{NN}} = 8$ TeV.

The reconstruction of the candidates is performed through the decay channel:

$$J/\psi \to \mu^+\mu^-$$
, $\mathcal{B} = (5.961 \pm 0.033)\%$.

The pseudo-proper time was used to separate the prompt and non-prompt contribution,

$$t_{z} \equiv \frac{(z_{J/\psi} - z_{\rm PV}) \times M_{J/\psi}}{p_{z}}.$$

LHCL

Nuclear modification factor

 $R_{pPb}(p_{T}, y^{*}) = \frac{1}{208} \frac{d^{2}\sigma_{pPb}(p_{T}, y^{*})/dp_{T}dy^{*}}{d^{2}\sigma_{pp}(p_{T}, y^{*})/dp_{T}dy^{*}}$

and Forward-Backward ratio

$$R_{\rm FB}(p_{\rm T},|y^*|) = \frac{{\rm d}^2 \sigma_{p\rm Pb}(p_{\rm T},|y^*|)/{\rm d}p_{\rm T}{\rm d}y^*}{{\rm d}^2 \sigma_{\rm Pbp}(p_{\rm T},-|y^*|)/{\rm d}p_{\rm T}{\rm d}y^*}.$$

Hard Probes 2023

R_{pPb} and R_{FB} for **prompt** J/ψ :

- Stronger suppression at forward rapidity $(1.5 < y^* < 4.0) \implies \downarrow x.$
- A strong suppression is shown at low p_T.
- At high $p_{\rm T}$, the nuclear modification factor approaches 1.

R_{pPb} and R_{FB} for **prompt** J/ψ .

- Suppression pattern described by all calculations.
- No evidence of energy dependence for CNM effects at LHC energy scales.

Available models:

- 1. HELAC-Onia event generator with different nPDFs:
 - EPS09LO,
 - nCTEQ15,
 - EPS09NLO.
- CGC effective field theory in the dilute-tense approximation. Not available at backward rapidity.
- 3. Coherent energy loss.

Clara Landesa Gómez

Hard Probes 2023

3. LHCb results in *p*Pb collisions. $\psi(2S)$ production at $\sqrt{s_{NN}} = 5$ TeV.

<u>JHEP 03 (2016) 133</u>

The reconstruction of the candidates is performed through the decay channel:

 $\psi(2S) \to \mu^+ \mu^-,$ $\mathcal{B}(\psi(2S) \to \mu^+ \mu^-) = (7.9 \pm 0.9) \times 10^{-3}$

But, assuming lepton universality...

$$\mathcal{B}(\psi(2S) \to \mu^+ \mu^-) = \mathcal{B}(\psi(2S) \to e^+ e^-) =$$

= (7.89 ± 0.17)×10⁻³.

The pseudo-proper time was used to separate the prompt and non-prompt contribution.

Upcoming results at 8TeV!

- R indicates whether there is relative suppression between $\psi(2S)$ and J/ψ :
 - $R < 1 \Rightarrow$ more relative suppression of the $\psi(2S)$.
- The results are compatible with ALICE.
- The suppression is only observed for prompt $\psi(2S)$.

 $\psi(2S)$ production at $\sqrt{s_{\rm NN}} = 5$ TeV

 $R_{p\rm Pb}^{\psi(2\rm S)} = R_{p\rm Pb}^{J/\psi} \times R.$

- The nuclear modification is in agreement with previous ALICE measurements.
- **Prompt** $\psi(2S)$ mesons are more suppressed with respect to pp collisions than prompt J/ψ mesons.

Hard Probes 2023

 $\psi(2S)$ production at $\sqrt{s_{\rm NN}} = 5$ TeV

 $R_{p\rm Pb}^{\psi(2\rm S)} = R_{p\rm Pb}^{J/\psi} \times R.$

- The results are not well described by theoretical predictions.
- Models with initial state effects can't explain the difference between the two $c\bar{c}$ states
 - ⇒ Final state effects are necessary to explain the relative suppression of $\psi(2S)$ (lower binding energy) with respect to J/ψ .

Available models:

- 1. LO Colour Singlet Model with nPDFs: EPS09, nDSg.
- 2. NLO Colour Evaporation Model (NLO CEM) with EPS09.
- Coherent parton energy loss that affects initial and final states, with EPS09 or without.

3. LHCb results in *p*Pb collisions. γ production and $\sqrt{s_{NN}} = 8$ TeV.

The reconstruction of the $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ candidates is performed through the decay channel:

> $\Upsilon(nS) \rightarrow \mu^+ \mu^-,$ $\mathcal{B}(\Upsilon(1S)) = (2.48 \pm 0.05)\%$ $\mathcal{B}(\Upsilon(2S)) = (1.93 \pm 0.17)\%$ $\mathcal{B}(\Upsilon(3S)) = (2.18 \pm 0.21)\%$

JHEP 11 (2018) 194

The nuclear modification factor shows similar behaviour as for the J/ψ for $\Upsilon(1S)$ and $\Upsilon(2S)$:

- Stronger suppression at forward rapidity $arrow (1.5 < y^* < 4.0) \implies \downarrow x.$
- A strong suppression is shown at **low** p_{T} .
- At high $p_{\rm T}$, the nuclear modification factor approaches 1.

The nuclear modification factor shows similar behaviour as for the J/ψ for $\Upsilon(1S)$ and $\Upsilon(2S)$:

- Stronger suppression at **forward rapidity** $(1.5 < y^* < 4.0) \implies \downarrow x.$
- A strong suppression is shown at **low** p_{T} .
- At high $p_{\rm T}$, the nuclear modification factor approaches 1.
- The suppression is more pronounced for the excited state Υ(2S).

Other observables can help to measure this difference!

Clara Landesa Gómez

LHCh

Available models:

- 1. HELAC-Onia event generator with nPDFs: EPPS16, nCTEQ15.
- 2. Calculations that add interactions with comovers to nPDFs:

EPS09-LO, nCTEQ15.

• The calculations that include **final state** interactions with comovers seem in better agreement with the data.

• New models include **hot-medium effects!**

<u>Phys. Rev. C 100, 024906 –</u> <u>Published 13 August 2019</u>

Hard Probes 2023

3. LHCb results in *p*Pb collisions. Prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ at $\sqrt{s_{NN}} = 8$ TeV.

• The ratio of the charmonium states χ_{c2} and χ_{c1} are measured through their decay:

 $\sigma(\chi_{\rm ci}) \to (J/\psi \to \mu^+ \mu^-) \gamma$

- $t_z < 0.1$ ps.
- Two independent results are shown:
 - Converted photons: reconstructed through

 $\gamma \rightarrow e^+ e^-$.

• Calorimetric photons: reconstructed through the energy deposited in the calorimetric system.

 $\Delta M = M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-)$

Prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ at $\sqrt{s_{NN}} = 8$ TeV.

PHYS. REV. C103 (2021) 064905

- The ratio is consistent with unity for forward and backward rapidity regions.
- The binding energies of χ_{c2} and χ_{c1} are small compared to J/ψ but similar among them.
- The results hint that the nuclear effects have same impact on the two states within uncertainties.

▶ Ongoing efforts to measure $\sigma(\chi_c \rightarrow J/\psi)/\sigma(J/\psi)$ at 8TeV!

3. LHCb results in *p*Pb collisions. Prompt-production cross-section ratio $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ at $\sqrt{s_{NN}} = 8$ TeV.

- First measurement of any exotic hadron in *p*Pb collisions.
- $t_z < 0.1$ ps.
- Both $\chi_{c1}(3872)$ and $\psi(2S)$ are reconstructed through their decays to $(J/\psi \rightarrow \mu^+\mu^-)\pi^+\pi^-$.

LHCB-CONF-2022-001

Prompt-production cross-section ratio $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ at $\sqrt{s_{NN}} = 8$ TeV.

- Increase of the ratio of cross-sections from *pp* to *p*Pb to Pb*p* collisions.
- *pp* collisions show a decreasing trend with multiplicity.
- May indicate that $\chi_{c1}(3872)$ experiences **different dynamics in the nuclear medium** than the conventional charmonium state.
- Possibility that hadronic densities allow **quark coalescence** to become a more relevant production mechanism.

Clara Landesa Gómez

Hard Probes 2023

Prompt-production cross-section ratio $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ at $\sqrt{s_{NN}} = 8$ TeV.

LHCB-CONF-2022-001

The increase on the ratio can be due to:

- 1. A larger relative suppression of the $\psi(2S)$ with respect to the exotic hadron.
- 2. An enhancement of the $\chi_{c1}(3872)$ in high density medium. New theoretical results explain the behaviour of the ratio through *medium-assisted enhancement*.

arXiv:2302.03828v1 [hep-ph] 8 Feb 2023

• Upcoming results on the R_{pPb} of the $\chi_{c1}(3872)$ will help to clarify this.

4. Summary and outlook: Quarkonia and exotic hadron production in pPb collisions at LHCb.

• So far, LHCb has measured the production of J/ψ and $\Upsilon(nS)$ at 5 and 8 TeV and the

production of $\psi(2S)$ at 5TeV. \triangleright Upcoming results at 8TeV!

- The prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ has been measured at 8 TeV \triangleright Ongoing efforts to measure $\sigma(\chi_c \rightarrow J/\psi)/\sigma(J/\psi)$ at 8TeV!
- Measurements of charmonia and bottomonia in pPb show stronger suppression with respect to pp of excited states, with lower binding energy. This effect is better reproduced by models with final-state effects.
- The prompt-production cross-section ratio $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ has been measured at 8 TeV. It constitutes the first measurement of the **exotic hadron** $\chi_{c1}(3872)$ in *p*Pb collisions. Upcoming results on the R_{pPb} of the $\chi_{c1}(3872)!$

Backup

1. Motivation. Quarkonia production in heavy ion collisions.

This suppression is generally quantified by the nuclear modification factor:

 $R_{AA} \propto \frac{\mathrm{d}^2 \sigma_{AA}/\mathrm{d}y \mathrm{d}p_{\mathrm{T}}}{\mathrm{d}^2 \sigma_{pp}/\mathrm{d}y \mathrm{d}p_{\mathrm{T}}}$

2. The LHCb experiment. More than *b*eauty.

pPb and Pbp collisions are asymmetric: there is a centre-of-mass rapidity shift

$$\Delta y = \pm 0.465.$$

- *p*Pb 1.5 < $y^* < 4.0 \Rightarrow x \sim 10^{-6}$,
- $Pbp 5.0 < y^* < -2.5 \Longrightarrow x \sim 10^{-2}$.

Binding energies

J. Phys. G 32 (2006) R25

observed stable charmonium states are summarized in table 1 and the corresponding bottomonium $(b \ \bar{b})$ states in table 2. The binding energies ΔE listed there are the differences between the quarkonium masses and the open charm or beauty threshold, respectively.

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Table 1: Charmonium states and	l binding	energies
--------------------------------	-----------	----------

state	Υ	χ_{b0}	χ_{b1}	χ_{b2}	Υ'	χ_{b0}'	χ'_{b1}	χ_{b2}'	Υ″
mass [GeV]	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
$\Delta E [\text{GeV}]$	1.10	0.70	0.67	0.64	0.53	0.34	0.30	0.29	0.20

Table 2: Bottomonium states and binding energies

J/ ψ production at $\sqrt{s_{\rm NN}} = 5$ TeV and $\sqrt{s_{\rm NN}} = 8$ TeV.

R_{pPb} for **non-prompt** J/ψ :

- Less suppression but similar trend to prompt measurements (higher suppression at forward rapidity and low $p_{\rm T}$).
- Compatible with the more recent measurements of B^+ production.

The results are compared to HELAC-Onia event generator with different nPDFs:

- EPPS16, EPPS16*,
- nCTEQ15.

JHEP 11 (2018) 194

- The ratio of Y(1S) to non-prompt J/ψ (open beauty) in pp and pPb are compatible within uncertainty for backward collisions, but there is a small suppression at forward rapidity.
 - \Rightarrow hints of different final CNM effects
 - affecting bottonium production

