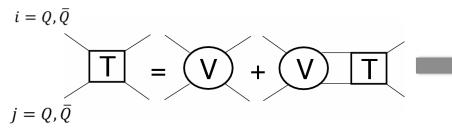


Spin-Induced Heavy-Quark Interactions and Transport in the QGP

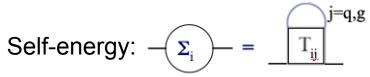
Zhanduo Tang

& Ralf Rapp


Cyclotron Institute, Texas A&M University College Station, TX, USA

- **1. Introduction to T-matrix approach**
- 2. Role of spin in vacuum spectroscopy of heavy-quarkonium
- 3. Impact on heavy-quark transport coefficient in QGP
- 4. Summary

1.1 T-Matrix Approach [F. Riek+R. Rapp '10] [S. Liu+R. Rapp '18]


Quantum many-body approach to quarkonium in vacuum and medium

- $G_i = 1/[\omega \omega_k \Sigma_i]$: 1-body propagator
- V_{ii}: potential (input of T-matrix)
 - Vacuum potential (Cornell): $V = -\frac{4}{3}\alpha_s \frac{1}{r} + \sigma r$ • Vacuum potential (Cornell): $V = -\frac{4}{3}\alpha_s \frac{1}{r} + \sigma r$ • Vacuum potential (Cornell): $V = -\frac{4}{3}\alpha_s \frac{1}{r} + \sigma r$ • Vacuum potential (Cornell): $V = -\frac{4}{3}\alpha_s \frac{1}{r} + \sigma r$
 - In-medium potential constrained by $Q\bar{Q}$ free energy from lattice QCD
 - Motivation: introducing spin-dependent potentials to account for QQ
 hyper-/fine splittings

$$T_{ij} = V_{ij} + \int V_{ij} G_i G_j T_{ij}$$

Dyson-Schwinger type self-consistent problem

1.2 Corrections to Potential

- Relativistic corrections
 - Breit correction: $V = RV^{vec} + V^{sca}$,

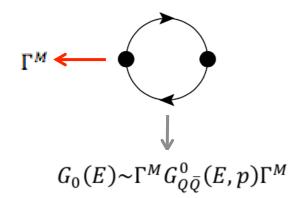
with
$$R = \sqrt{\frac{\varepsilon_i(p)\varepsilon_j(p)}{M_iM_j}} \sqrt{1 + \frac{p^2}{\varepsilon_i(p)\varepsilon_j(p)}} \sqrt{\frac{\varepsilon_i(p')\varepsilon_j(p')}{M_iM_j}} \sqrt{1 + \frac{p'^2}{\varepsilon_i(p')\varepsilon_j(p')}}$$

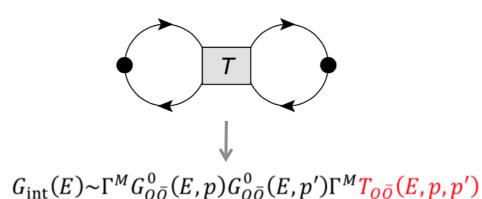
relativistic correction for the vector interaction

$$V^{vec} = V_{Coul}$$

Common assumption: $V^{sca} = V_{conf}$

[N. Brambilla+A. Vairo '97] [A. Szczepaniak et al. '96, '97] \leftarrow Improved assumption: $V^{vec} = V_{coul} + (1 - \chi)V_{conf}$, $V^{sca} = \chi V_{conf}$ [D. Ebert et al. '98, '03]

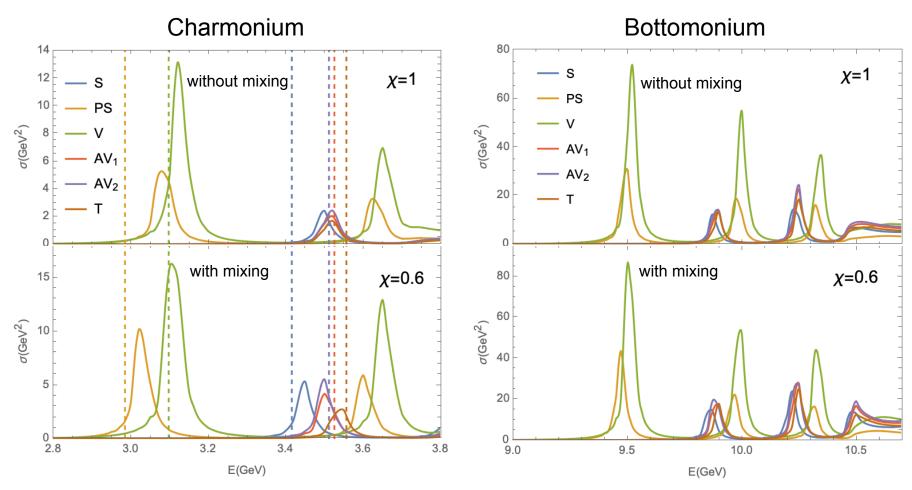

mixing coefficient (proportion of scalar component in V_{conf})


• Higher order in $1/M_Q$: $V = RV^{vec} + V^{sca} + V^{LS} + V^{SS} + V^T$

spin-orbit:
$$V^{LS} = \frac{1}{2M_Q^2 r} \langle \boldsymbol{L} \cdot \boldsymbol{S} \rangle \left(3 \frac{d}{dr} V^{vec} - \frac{d}{dr} V^{sca} \right)$$
 spin-spin: $V^{SS} = \frac{3}{3M_Q^2} \langle \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \rangle \bigtriangleup V^{vec}$
tensor: $V^T = \frac{1}{12M_Q^2} S_{12} \left(\frac{1}{r} \frac{d}{dr} V^{vec} - \frac{d^2}{dr^2} V^{vec} \right)$

2.1 Correlation/Spectral Functions

- Quakonium mass read from spectral functions
- Spectral functions: $\sigma(E) = -\frac{1}{\pi} \text{Im}[G_0(E) + G_{\text{int}}(E)]$
- Correlation functions:


non-interacting (free) part

interacting part

		scalar	pseudoscalar	vector	axial-vector	tensor
		(S)	(PS)	(V)	(AV)	(T)
Γ^M	!	1	$i\gamma_5$	γ^{μ}	$\gamma^{\mu}\gamma_{5}$	$i[\gamma^{\mu},\gamma^{\nu}]/2$

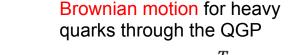
- S-wave (PS, V) and P-wave (S, AV, T) states degenerate without spin-related (1/ M_Q) corrections

2.2 Quarkonium Vacuum Spectroscopy

- Mass splittings significantly improved by mixing effect
- Less significant for bottomonium (1/M_b<1/M_c)

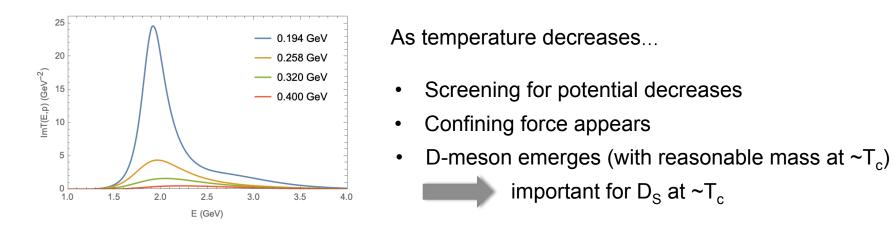
3.1 In-Medium Charm-Quark Transport

Fokker-Planck equation


$$\frac{\partial}{\partial t}f(p,t) = \frac{\partial}{\partial p_i} \left\{ \begin{array}{c} A(p)p_i f(p,t) + \frac{\partial}{\partial p_j} \left[B_{ij}(p)f(p,t) \right] \\ \psi \end{array} \right\}$$

thermal relaxation rate momentum diffusion coefficient (friction coefficient)

$$A(p) \sim \sum_{i} \int d^{4}p' d^{4}q \ d^{4}q' \left| T_{Qi} \right|^{2} \left(1 - \frac{p \cdot p'}{p^{2}} \right)^{2}$$

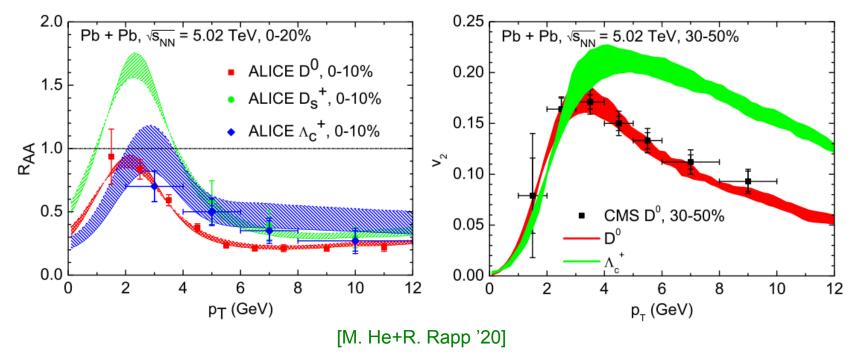

T_{oi}: heavy-light T-matrices

spatial diffusion coefficient: $D_s = \frac{1}{M_Q A(p \to 0)}$ $i = \bar{q}, q$

$$T = V + V T$$

Prediction for D-meson from T-matrix approach

3.2 In-Medium Charm-Quark Transport



• Transport coefficients :

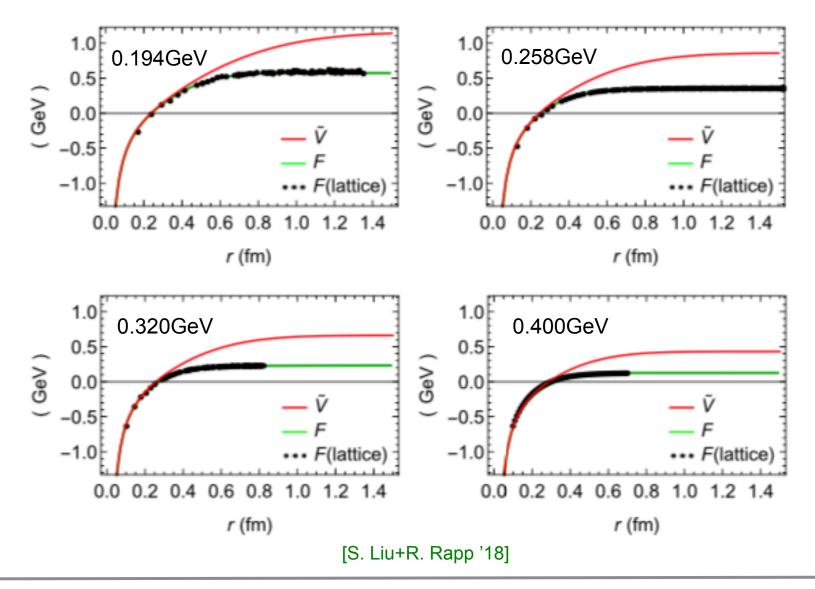
- Increase in A(p) + harder dependence on momentum
 - important ramifications for the phenomenology of open heavy flavor probes in URHICs.

3.3 Connection to Experimental Observables

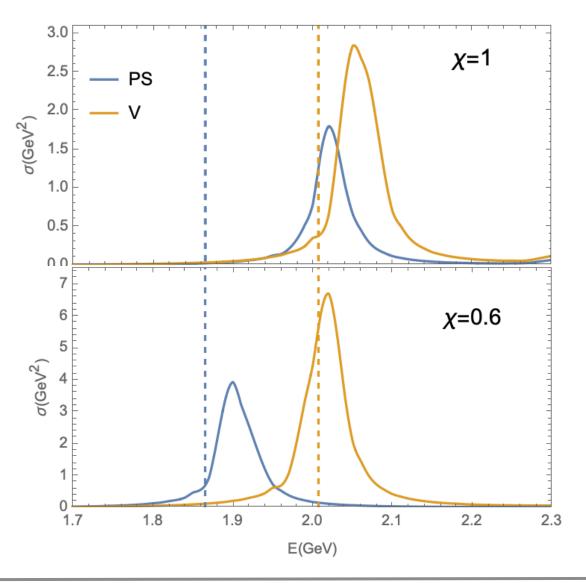
- A good description of D, D_s and Λ_c observables in heavy-ion collisions

- Using T-matrix with U-potential as input + an extra K≈1.6
- Mixing effect (larger A(p)) promising to explain K factor

4. Summary


- Extending T-matrix approach to include spin-induced interactions in vacuum
- Introducing vector component in confining potential V_{conf}
- Vacuum charmonium and bottomonium mass splittings improve
- Friction coefficients for charm quarks in the QGP enhanced, especially at high momenta (consequence of the enhancement from extra relativistic correction factor for the vector component of V_{conf})

Thanks for Your Attention!


Zhanduo Tang Advisor: Dr. Ralf Rapp

Cyclotron Institute Texas A&M University

Fit to $Q\bar{Q}$ Free Energy

D⁰-D^{*} Splitting in Vacuum

