New approach of charmonium medium response using elliptic and triangular flow of J/ ψ and ψ (2S) with CMS

Introduction

- Quarkonia (J/ ψ , ψ (2S), and Υ), heavy quarks produced at the early stages
- Azimuthal (ϕ) distribution of particles: another effective way to probe QGP dynamics.
- Sensitive to initial collision geometry and event-by-event fluctuations
- QGP's anisotropic shape: quarkonia more suppressed in longer path directions

• Fourier coefficients (v_n) of the ϕ distribution can characterize azimuthal correlations

$$\frac{dN}{d\phi} \sim [1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) \dots]$$
v₂: Elliptic flow
v₃: Triangular flow

Motivation J/ψ flow

- Precise measurement at 5.02 TeV with 2018 data (L_{int} ~1.6 nb⁻¹)
- Low p_T : probe of the charm quark collective
- High p_T : study of the path length dependence of quarkonium suppression
- Contribution from b hadron decays ($b \rightarrow \mbox{J/\psi}$)
- No measurement of prompt and $b \to J/\psi ~v_3$

Motivation $\psi(2S)$ flow

- Not been measured yet
- Potential larger v_2 of $\psi(2S)$
 - Sensitive to temperature and diffusion coefficient?
 - Different regeneration for 1S and 2S states?

Prompt and B to Charmonia

Two techniques to separate components

1. 2D fit to dimuon mass and decay length

2. Reject b-contamination by constraints on decay length

Prompt J/ ψ , b \rightarrow **J/** ψ

Prompt ψ(2S)

5

v_n extraction for J/ ψ

v_n extraction for prompt $\psi(2S)$

Geonhee Oh(UIC)

Result: $J/\psi v_2$

Comparison: CMS v₂

Low p_T: light > charm > beauty (mass ordering)

• High p_T: converged v₂ for all species

Result: prompt $J/\psi v_2 v_3$. Model

- LBT is used for the medium response of jets in PbPb collisions
- ${\scriptstyle \bullet}\,v_2$ in the data underpredicted by the model
- Additional contributions required to describe prompt J/ ψ at high-p_T

Result: $J/\psi v_3$

Comparison: Charm v₃

• Low p_T : Prompt $D^0 v_3 > Prompt J/\psi v_3$

• Open charm is more sensitive to initial geometry than hidden charm

Comparison: b hadrons v₃

• v₃ of b hadrons are consistent

Result: prompt $\psi(2S) v_n$

Comparison: $\psi(2S) v_n v_s J/\psi v_n$

Summary

- Study of azimuthal anisotropy for charmonia
- Prompt J/ ψ v₂ > b \rightarrow J/ ψ v₂
 - \rightarrow in-medium effect for c and b quarks flow
- Large prompt $J/\psi v_2$ at high-p_T
 - \rightarrow J/ ψ production: jet frag. + additional contribution
- prompt, $b \to J/\psi \, v_3$ consistent with zero
- •ψ(2S) v₂, v₃
 - Indication of $\psi(2S) v_2 > prompt J/\psi v_2$
 - \rightarrow different hadronization time
 - v₃ consistent with zero

Thank you for your attention

Motivation

- Less suppression for isolated J/ ψ compared to J/ ψ with larger jet activity
- Jet quenching : important role for J/ψ suppression at high-p_T
- Investigate J/ψ flow at high-p_T

Comparison: CMS 2.76 vs 5.02 TeV

• Prompt and $b \rightarrow J/\psi$ at 2.76 vs 5.02 TeV

• High-precision with larger samples (x10)

Comparison: v₂ with ATLAS, ALICE

- Flow of inclusive and prompt J/ψ
- Flat to high p_T

- Flow of $b \, \mbox{quark}$
- Compatible within uncertainty

