

Measurements of D⁰ mesons production and collective flow with CMS at 5.02 TeV

Milan Stojanovic

Purdue University on behalf of the CMS collaboration

Hard Probes 2023, Aschaffenburg, Germany

Heavy quark anisotropy

Traveling light

VS

carrying a heavy luggage

$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Psi_n)]$$

Flow mechanism (heavy quarks):

- □ low p_T → hydrodynamics + collisional energy loss
- $\Box \quad \text{medium all } p_T \rightarrow \text{coalescence}$

□ high $p_{\rm T}$ → path-dependent parton energy loss

D⁰ signal extraction

Reconstruction

Data from 2018 Run:

- PbPb @ 5 TeV ~ 4B Minimum Bias events
- \Box Inclusive D^0 reconstruction
 - $\bigstar D^0 \to K^- \pi^+$
- ❑ No particle identification → All possible combinations of pairs with opposite charge track in an event are taken into account
- □ Additional selection performed with Boosted Decision Tree

D⁰ signal extraction

submitted to PLB

Reconstruction

- Data from 2018 Run:
 - PbPb @ 5 TeV ~ 4B Minimum Bias events
- \Box Inclusive D^0 reconstruction

 $\bigstar D^0 \to K^- \pi^+$

- \Box No particle identification \rightarrow All possible combinations of pairs with opposite charge track in an event are taken into account
- Additional selection performed with Boosted Decision Tree

Inclusive D⁰ Yield

□ Signal mass spectrum – double gaussian

- Swap component gaussian
- $\Box K^+K^- \& \pi^+\pi^-$ Crystal ball functions
- Combinatorial polynomial 3rd order

D⁰ meson anisotropy

Charm anisotropy via D⁰

 $Q_n - D^0$ candidate flow vector

DUE

UNIVERSITY

 Q_{nA}, Q_{nB}, Q_{nC} – event plane vectors from subevents

$$v_n \{ \text{SP} \} \equiv \frac{\langle Q_n Q_{nA}^* \rangle}{\sqrt{\frac{\langle Q_{nA} Q_{nB}^* \rangle \langle Q_{nA} Q_{nC}^* \rangle}{\langle Q_{nB} Q_{nC}^* \rangle}}}$$

 \Box Similar $p_{\rm T}$ dependence as for charged hadrons

PLB 816 (2021) 136253

Search for EM field in PbPb

Phys. Rev. C 98, 055201 (2018)

IVERSIT

Event-by-event fluctuations

Event by event fluctuations:

- □ Initial geometry fluctuations event property
- □ Final state effects can show difference between D⁰ and charged particles

Event-by-event fluctuations

 \Box D⁰ compatible with charged hadrons in 10-40% centrality

 $\circ~$ Suggesting that initial fluctuations are dominant

PRL 129 (2022) 022001

Indication of discrepancies in more peripheral collisions
 o potential final state effects
 Milan Stojanovic, HP 2023

Bottom anisotropy via D⁰

b quark anisotropy

UNIVERSITY

25

Two component template fit to extract $b
ightarrow \mathrm{D}^0$ fraction

DCA (distance of closest approach)

Two component template fit to extract $b o \mathrm{D}^0$ fraction

DCA (distance of closest approach)

PURDUE UNIVERSITY

Two component template fit to extract $b
ightarrow {
m D}^0$ fraction

$b \rightarrow D^0$ anisotropy **UE** VERSITY CMS PbPb 5.02 TeV (0.58 nb⁻¹) 0.2 • Prompt D⁰ (PLB 816 (2021) 136253) D⁰ from b hadron decays |v| < 10.1 **V**2 **Elliptic flow** FINAL 0.1 30-50% Centrality 0-10% 10-30% 0.05 ر د 0 Triangular flow

First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions

5

0

10

20

15

*p*_т (GeV/*c*)

25

arXiv:2212.01636 submitted to PLB

Mass ordering of flow magnitudes

Weak p_T and centrality dependence
 Nonzero v₃

5

10

15

 $p_{_{\rm T}}$ (GeV/c)

20

25

10

5

15

 $p_{_{T}}$ (GeV/c)

20

25

$b \rightarrow D^0$ anisotropy

First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions

• Qualitatively good agreement between theory and data

DUE

IVERSITY

 \Box No model can describe whole p_T range

high-p_⊤ CUJET3 CPC 43 4 (2019) 044101 LBT PRC 94 (2016) 014909

low-p_T PHSD: PRC 92 (2015) 014910 TAMU PLB 735 (2014) 445 LGR EPJ C 80 7 (2020) 671

UE UNIVERSITY

27.4 pb⁻¹ (5.02 TeV pp) + 530 μb⁻¹ (5.02 TeV PbPb)

1.4

12

⊈_{0.8}

0.6 0.4 0.2 Prompt D⁰ lyl<1</p>

Global uncertainty

Charged hadrons lnl<1

D⁰ from b hadrons lyl<1</p>

♦ B[±] lyl<2.4</p>

⊕ 1.8<|y|<2.4</p>

+ |v|<2.4

J/w from b hadrons:

 \Box Simultaneous measurement of R_{AA} and v_n essential for understanding heavy flavor in QGP

□ 2015 results:

- Hint of mass ordering at low p_T Ο
- Unexpected suppression at low p_T Ο

More precise measurement needed

100

Summary

□ Prompt **D**⁰ azimuthal anisotropy

- E-by-E fluctuations indicate different final state effects in peripheral collisions
- $\circ~$ No sign of strong Coulomb field in PbPb

- $\circ~$ Covered both high $p_{\rm T}$ and low $p_{\rm T}$ range
- \circ $\,$ Mass ordering of flow observed $\,$

arXiv:2212.01636 submitted to PLB

Backup

CMS of the second secon

Simultaneous fit on invariant mass distribution and vn (delta vn) versus mas

VERSIT

Heavy flavor v₂ from CMS

CMS *Preliminary* PbPb 1.6 nb⁻¹ (5.02 TeV) **Charged hadrons** Charged hadrons **Prompt J/**ψ, Cent. 10-60% 0.25 Inl < 1, Cent. 10-30% ○ 1.6 < lyl < 2.4 Phys. Lett. B 776 (2017) 195 • lyl < 2.4 Y(1S) Iyl < 2.4, Cent. 10-30%</p> Nonprompt J/ψ , Cent. 10-60% 0.2 **Prompt D**⁰ () 1.6 < |y| < 2.4 ♦ lyl < 2.4 Phys. Lett. B 816 (2021) 136253 **Prompt D⁰** 0.15 ■ lyl < 1, Cent. 10-30% Nonprompt D⁰ Nonprompt **D**⁰, PAS-HIN-21-003 ★ lyl < 1, Cent. 10-30% 0. CMS-PAS-HIN-21-003 Prompt J/ψ 0.05 CMS-PAS-HIN-21-008 0 Nonprompt J/ψ CMS-PAS-HIN-21-008 -0.0510 Y(1S) p_{_} (GeV/c) CMS-PAS-HIN-21-008