

New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

ANNALENA KALTEYER, GSI DARMSTADT, UNIVERSITÄT HEIDELBERG

ON BEHALF OF THE ALICE COLLABORATION

28.03.2023

11th International Conference on hard and electromagnetic probes of high-energy nuclear collisions

Heavy-flavour production

functions (PDFs)

$$\frac{d\sigma^{\mathrm{pp}\to H_q}}{dp_{\mathrm{T}}} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \times \frac{d\sigma^{ij\to q}}{dp_{\mathrm{T}}} (x_1, x_2, \mu_f^2) \times D_{q\to H_q} (z_q = \frac{p_{H_q}}{p_q}, \mu_f^2)$$
Parton distribution Hard scattering cross Fragmentation function

section (pQCD)

Test pQCD-based calculations and study hadronisation with heavy-flavour (HF) hadron production measurements

- Cross section of charm- and beauty-hadron production is typically calculated in a factorization approach
 - Fragmentation functions are constrained from e^+e^- and e^-p measurements
 - Typical assumption: fragmentation functions apply universally across e^+e^- , e^-p , pp, p–Pb and Pb–Pb collision systems
- Yield ratios of charm/beauty hadrons are sensitive to heavy-quark hadronisation

●→ # ← ●

- Reference for Pb–Pb
- Test of pQCD
- Study hadronisation

- Study cold nuclear matter (CNM) effects
 - Modification of PDFs
 in nuclei

- Investigate fundamental properties of strongly interacting hot matter (QGP)
 - Energy loss
 - Collectivity
 - Hadronisation

(hadronisation)

Heavy-flavour production

$$\frac{d\sigma^{\mathrm{pp} \to H_q}}{dp_{\mathrm{T}}} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \times \frac{d\sigma^{ij \to q}}{dp_{\mathrm{T}}} (x_1, x_2, \mu_f^2) \times D_{q \to H_q} (z_q = \frac{p_{H_q}}{p_q}, \mu_f^2)$$
Parton distribution
Fragmentation function
functions (PDFs)
Hard scattering cross
fragmentation function
(hadronisation)

Test pQCD-based calculations and study hadronisation with heavy-flavour (HF) hadron production measurements

- Cross section of charm- and beauty-hadron production is typically calculated in a factorization approach
 - Fragmentation functions are constrained from e^+e^- and e^-p measurements
 - Typical assumption: fragmentation functions apply universally across e^+e^- , e^-p , pp, p–Pb and Pb–Pb collision systems
- Yield ratios of charm/beauty hadrons are sensitive to heavy-quark hadronisation

Significant baryon enhancement in pp with respect to e^+e^- and e^-p collisions

Charm and beauty meson production

Meson-to-meson yield ratio:

- D⁺/D⁰ yield ratios are independent of meson p_T for prompt and non-prompt measurements
- Charm and beauty meson-to-meson yield ratios are well described by model calculations, based on the factorization approach assuming fragmentation functions from e⁺e⁻ collisions

FONLL: JHEP 05 (1998) 007 $f_c \rightarrow D$: Eur. Phys. J. C75 (2015) 19

Strange charm meson production

.8

pp

]+0.7 0.6 +(0.6

0.5

0.4

0.3

0.2

0.1

ALI-PREL-539860

ALICE Preliminary

BR unc. not shown

5

10

■ √*s* = 5.02 TeV

15

♦ √s = 13 TeV

Meson-to-meson yield ratio:

 \rightarrow D⁺_s/(D⁰ + D⁺) yield ratios are also independent of meson p_T

b

 D^{+}, D^{0}, D_{s}^{+}

- Consistency between center-of-mass energies
- $rac{f_s}{f_u + f_d}$ ratio for non-prompt is found to be the same as beauty in e⁺e⁻ results

20

(GeV/*c*)

ICE

LEP average: $(0.113 \pm 0.013 \pm 0.006)$

J.P. Christiansen, P. Z. Skands: JHEP 1508 (2015) 003

С

- Models based on fragmentation functions from
 e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)
- Models including color reconnection beyond leading color describe the data (PYTHIA 8 CR Mode 2)

Allowing "**junction**" topologies in multiparton interactions, which enhance the charm baryon production.

Significant baryon enhancement w.r.t models tuned on e^+e^- collisions

 $\Lambda_{\rm c}^+/{\rm D}^0$

Ъ

 $\Lambda_{c}^{+}/|$

0.8

0.6

0.4

0.2

n

ALI-DER-539945

arXiv:2211.14032

5

lyl < 0.5

d

С

11

Annalena Kalteyer – 28.03.2023 – HP 2023 – New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

Ъ

 $\Lambda_{c}^{+}/|$

0.8

0.6

0.4

0.2

ALI-DER-539945

arXiv:2211.14032

ALICE pp, $\sqrt{s} = 5.02 \text{ TeV}$

5

QCM

SH model + RQM

10

*p*_{_} (GeV/*c*)

|y| < 0.5

Feed-down from an augmented set of excited charm baryons necessary to describe $\frac{\Lambda_c^2}{R^0}$

- PDG states: $5 \Lambda_c$, $3 \Sigma_c$, $8 \Xi_c$, $2 \Omega_c$
- RQM states: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c •

M. He, R. Rapp: PLB 795 (2019) 117-121

С

 $\Lambda_{\rm c}^+/{\rm D}^0$

ICE

H. Li et. Al.: PRC 97 (2018) 064915

Quark (re)combination mechanism

Charm is **combined with co-moving light antiquark or two quarks**. Abundances of charm baryon species are determined by thermal weights.

Strange charm baryon production

Charm-strange sector not yet fully understood.

CE

С

Baryon-to-meson yield ratio

In the charm-strange sector the enhancement is even larger

- > PYTHIA with Monash tune and CR-BLC, QCM, and the SHM+RQM underestimate $\Xi_c^{0,+}/D^0$ yield ratio
- > Catania describes the $\Xi_c^{0,+}/D^0$ shape down to $p_T \approx 2 \text{ GeV/}c$
- > Catania describes the Ω_c^0 / D^0 yield ratio best, when including higher mass resonance decays (*)

Annalena Kalteyer – 28.03.2023 – HP 2023 – New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

^{*} BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$) is not measured \rightarrow use calculation for scaling of theory curves <u>Y. Hsiao et al. EPJC 80,</u> <u>1066 (2020)</u>

Modification of $p_{\rm T}$ spectra from pp to p-Pb? •

► For $p_T > 3 \text{ GeV/c } \Lambda_c^+/D^0$ larger in p– Pb collisions than in pp collisions, for $p_T < 2 \text{ GeV/c}$ tendency for lower ratio

 $\Lambda_{c}^{+}, \Xi_{c}^{0}$

- > Confirmed by 3.7 σ higher $\langle p_{\rm T} \rangle$ of $\Lambda_{\rm c}^+$
- QCM underpredicts the Ξ⁰_c/D⁰ yield ratio, although it can describe the Λ⁺_c/D⁰ yield ratio, as it was seen also in pp collisions

arXiv:2211.14032

Hardening of p_T spectra w.r.t pp is predicted in the presence of a medium (QCM) for Λ_c^+ and Ξ_c^0

p_{T} -integrated yields from pp to Pb–Pb

 $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$:

► No significant variation of p_{T} -integrated Λ_{c}^{+}/D^{0} as a function of multiplicity or collision system within the uncertainties

Hypothesis:

Difference between collision systems is due to momentum redistribution, no modification of the overall yield.

> Models including coalescence describe the data, as well as the SHM when including additional charm baryon states.

> > 3

 $\Lambda_{\rm c}^+/{\rm D}^0$

С

pp (13 TeV), pp (5.02 TeV), p-Pb (5.02 TeV), Au-Au (200 GeV), Pb-Pb (5.02 TeV)

SHMc, Catania, TAMU, Monash, CR-BLC Mode 2

Annalena Kalteyer – 28.03.2023 – HP 2023 – New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

Beauty baryon-to-meson yield ratio

FONLL calculations for beauty quark production (FONLL: JHEP 05 (1998) 007)

 $f(b \rightarrow \Lambda_b^0)$, LHCb (<u>PRD 100 (2019) no.3, 031102</u>) BR(H_b $\rightarrow \Lambda_c^+ + X$), PYTHIA 8 (<u>arXiv:1410.3012</u>) Non-prompt Λ_c^+ and D^0 are well described by model calculations within the uncertainties

 $\Lambda_{\rm c}^+/{\rm D}^0$

c, b

Nuclear modification factor

Nuclear modification factor

- ➢ $R_{pPb} = 1$: No modification in p−Pb with respect to pp collisions
- Disentangle cold nuclear matter effects from final state effects

 $\Lambda_{c}^{+}, \Xi_{c}^{0}$

С

- > $R_{\rm pPb}$ of $\Lambda_{\rm c}^+$ and $\Xi_{\rm c}^0$ are in agreement within the uncertainties
- *R*_{pPb} of Λ⁺_c < 1 at low *p*_T and > 1 at intermediate *p*_T, as also observed in the strange sector (CMS: Phys. Rev. C 101, 064906)
- > QCM prediction agrees with Ξ_c^0 measurement

CF

Nuclear modification factor

- > Non-prompt $D^0 R_{pPb}$ is in agreement with measurement of B⁺ from CMS
- > p_{T} -integrated non-prompt D⁰ R_{pPb} is in agreement with measurement of B⁺, and non-prompt J/ ψ from LHCb

ICE

Non-prompt R_{pPb}

Nuclear modification factor

- Non-prompt D⁰ R_{pPb} is in agreement with measurement of B⁺ from CMS
- ▶ p_{T} -integrated non-prompt D⁰ R_{pPb} is in agreement with measurement of B⁺, and non-prompt J/ ψ from LHCb
- Study shadowing for beauty and for charm

Total charm cross section

Results are on the upper edge of **FONLL and NNLO** calculations

PRD 105, L011103 (2022)

.

 $\Xi_{\rm c}^0$

- Measured at midrapidity as a sum of ground state charm hadron cross sections
- > pp and p–Pb results are compatible
- Significant baryon enhancement in pp and p–Pb w.r.t. e^+e^- and e^-p collisions

Total charm cross section

> Update of c, c \rightarrow e⁺e⁻ will be released soon, with an updated BR

Annalena Kalteyer – 28.03.2023 – HP 2023 – New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

Summary

Heavy flavour hadrons

- Modified hadronisation mechanisms could be needed w.r.t. \geq the vacuum string fragmentation picture to describe the heavy-flavour baryon measurements
- > Or additional charm baryon states should be considered

Talk:

Antonio

Palasciano 29.03. 14:40

Outlook

LHC Run 3, 4 and beyond

- Higher data taking rate and upgraded TPC and ITS
- Direct reconstruction of beauty mesons and baryons
- Measurement of charm and beauty cross section and fragmentation fractions from pp to Pb–Pb
- > Reconstruction of complex decays like Ξ_{cc}^{++}
- Better constraints to theoretical models of the strongly interacting medium and hadronisation

Significance

10

Backup

Doubly strange charmed baryon production

$BR(\Omega_c^0\to\Omega^-\pi^+)\times\Omega_c^0/D^0$

^{*} BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$) = (0.51 ± 0.07)% is not measured \rightarrow use calculation for scaling <u>Y. Hsiao et al. EPJC 80, 1066 (2020)</u>

Ratio	ALICE (pp 13 TeV)	Belle (e^+e^- 10.52 GeV)
	$2 < p_{\mathrm{T}} < 12 \ \mathrm{GeV}/c$	visible
${ m BR}(\Omega_{ m c}^0 o \Omega^- \pi^+) imes \sigma(\Omega_{ m c}^0) / \sigma(\Lambda_{ m c}^+)$	$(1.96 \pm 0.42 \pm 0.13) \times 10^{-3}$	$(2.24\pm0.29\pm0.16) imes10^{-4}$
${ m BR}(\Omega_{ m c}^{0} o \Omega^{-} \pi^{+}) imes \sigma(\Omega_{ m c}^{0}) / \sigma(\Xi_{ m c}^{0})$	$(3.99 \pm 0.96 \pm 0.96) \times 10^{-3}$	$(8.58 \pm 1.15 \pm 1.98) \times 10^{-4}$

Belle: PRD 97, 072005 (2018)

fragmentation fraction ~7%

Catania comes closest to data and describes baryon-to-meson yield ratio when including higher mass resonance decays Sizable Ω_c^0 contribution to charm production at LHC energies?

Annalena Kalteyer - 28.03.2023 - HP 2023 - New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

 $\Lambda_{\rm c}^+/{\rm D}^0$

С

Total charm and beauty cross section

Nuclear modification factor

Goal: Study modifications also in Pb–Pb collisions

 $\Lambda_{c}^{+}, \Xi_{c}^{0}$

С