

New insights into heavy-quark hadronisation with charm and beauty hadrons in hadronic collisions with ALICE

ANNALENA KALTEYER, GSI DARMSTADT, UNIVERSITÄT HEIDELBERG ON BEHALF OF THE ALICE COLLABORATION
28.03.2023

Heavy-flavour production

$$
0 \rightarrow \leftarrow 0
$$

$$
\begin{aligned}
& \frac{d \sigma^{\mathrm{pp} \rightarrow H_{q}}}{d p_{\mathrm{T}}}=f_{i\left(x_{1}, \mu_{f}^{2}\right) f_{j}\left(x_{2}, \mu_{f}^{2}\right) \times \frac{d \sigma^{i j \rightarrow q}}{d p_{\mathrm{T}}}\left(x_{1}, x_{2}, \mu_{f}^{2}\right) \times D_{q \rightarrow H_{q}}\left(z_{q}=\frac{p_{H_{q}}}{p_{q}}, \mu_{f}^{2}\right)}^{\begin{array}{l}
\text { Parton distribution } \\
\text { functions (PDF) }
\end{array}} \begin{array}{l}
\text { Hard scattering cross } \\
\text { section (pQCD) }
\end{array} \text { Fragmentation function } \\
& \text { (hadronisation) }
\end{aligned}
$$

$>$ Reference for $\mathrm{Pb}-\mathrm{Pb}$
> Test of pQCD
> Study hadronisation

Test pQCD-based calculations and study hadronisation with heavy-flavour (HF) hadron production measurements
> Cross section of charm- and beauty-hadron production is typically calculated in a factorization approach

- Fragmentation functions are constrained from $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{e}^{-} \mathrm{p}$ measurements
- Typical assumption: fragmentation functions apply universally across $\mathrm{e}^{+} \mathrm{e}^{-}$, $\mathrm{e}^{-} \mathrm{p}, \mathrm{pp}, \mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collision systems
> Yield ratios of charm/beauty hadrons are sensitive to heavy-quark hadronisation

> Study cold nuclear matter (CNM) effects
- Modification of PDF in nuclei

> Investigate fundamental properties of strongly interacting hot matter (QGP)
- Energy loss
- Collectivity
- Hadronisation

Heavy-flavour production

$$
\begin{array}{cc}
\frac{d \sigma^{\mathrm{pp} \rightarrow H_{q}}}{d p_{\mathrm{T}}}=f_{i\left(x_{1}, \mu_{f}^{2}\right) f_{j}\left(x_{2}, \mu_{f}^{2}\right) \times \frac{d \sigma^{i j \rightarrow q}}{d p_{\mathrm{T}}}\left(x_{1}, x_{2}, \mu_{f}^{2}\right) \times D_{q \rightarrow H_{q}}\left(z_{q}=\frac{p_{H_{q}}}{p_{q}}, \mu_{f}^{2}\right)}^{\begin{array}{c}
\text { Parton distribution } \\
\text { functions (PDFs) }
\end{array}} \begin{array}{c}
\text { Hard scattering cross }
\end{array} & \begin{array}{l}
\text { Fragmentation function } \\
\text { section (DQCD) }
\end{array} \\
\text { (hadronisation) }
\end{array}
$$

Test pQCD-based calculations and study hadronisation with heavy-flavour (HF) hadron production measurements
> Cross section of charm- and beauty-hadron production is typically calculated in a factorization approach

- Fragmentation functions are constrained from $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{e}^{-} \mathrm{p}$ measurements
- Typical assumption: fragmentation functions apply universally across $\mathrm{e}^{+} \mathrm{e}^{-}$, $\mathrm{e}^{-} \mathrm{p}, \mathrm{pp}, \mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collision systems
> Yield ratios of charm/beauty hadrons are sensitive to heavy-quark hadronisation

PRD 105, L011103 (2022)
Significant baryon enhancement in pp with respect to $\mathrm{e}^{+} \mathrm{e}^{-}$and
$\mathrm{e}^{-} \mathrm{p}$ collisions

MMMMN

The ALICE experiment

Time Projection Chamber (TPC):
Tracking, PID via $\mathrm{d} E / \mathrm{d} x$

Triggering

Inner Tracking System (ITS):

 Tracking and vertexingTime-of-Flight (TOF) detector: PID via time of flight

$$
\begin{array}{cc}
\mathrm{D}^{0}(\overline{\mathrm{u} c}) \rightarrow \mathrm{K}^{-} \pi^{+} & \Lambda_{\mathrm{c}}^{+}(\mathrm{udc}) \rightarrow \mathrm{pK}^{-} \pi^{+}, \mathrm{pK}_{\mathrm{s}}^{0} \\
\mathrm{D}^{+}(\overline{\mathrm{d}} \mathrm{c}) \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+} & \Sigma_{\mathrm{c}}^{0,++}(\mathrm{ddc}, \mathrm{uuc}) \rightarrow \Lambda_{\mathrm{c}}^{+} \pi^{-,+} \\
\mathrm{D}^{*+}(\overline{\mathrm{d}} \mathrm{c}) \rightarrow \mathrm{D}^{0} \pi^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+} & \Xi_{\mathrm{c}}^{0}(\mathrm{dsc}) \rightarrow \Xi^{-} \mathrm{e}^{+} \nu_{\mathrm{e}}, \Xi^{-} \pi^{+} \\
\mathrm{D}_{\mathrm{s}}^{+}(\overline{\mathrm{s} c}) \rightarrow \Phi \pi^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+} & \Xi_{\mathrm{c}}^{+}(\mathrm{usc}) \rightarrow \Xi^{-} \pi^{+} \pi^{+} \\
\mathrm{D}_{\mathrm{s} 1}^{+}(\overline{\mathrm{s} c}) \rightarrow \mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}^{0} \pi^{+} \pi^{-} \pi^{+} & \Omega_{\mathrm{c}}^{0}(\mathrm{ssc}) \rightarrow \Omega^{-} \pi^{+} \\
\mathrm{D}_{\mathrm{S} 2}^{*+}(\overline{\mathrm{s} c}) \rightarrow \mathrm{D}^{+} \mathrm{K}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}^{0} \pi^{+} \pi^{-} \pi^{+} &
\end{array}
$$

$$
\text { pp: } \quad \sqrt{\mathrm{s}}=5.02 \mathrm{TeV} \rightarrow \mathcal{L}_{\mathrm{int}} \sim 19 \mathrm{nb}^{-1}
$$

$$
\mathrm{pp}: \quad \sqrt{s}=13 \mathrm{TeV} \rightarrow \mathcal{L}_{\mathrm{int}} \sim 32 \mathrm{nb}^{-1}
$$

$$
\mathrm{p}-\mathrm{Pb}: \sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV} \rightarrow \mathcal{L}_{\mathrm{int}} \sim 287 \mu \mathrm{~b}^{-1}
$$

Meson-to-meson yield ratio:
$>\mathrm{D}^{+} / \mathrm{D}^{0}$ yield ratios are independent of meson p_{T} for prompt and non-prompt measurements
> Charm and beauty meson-to-meson yield ratios are well described by model calculations, based on the factorization approach assuming fragmentation functions from $\mathrm{e}^{+} \mathrm{e}^{-}$ collisions
FONLL: JHEP 05 (1998) $007 \quad \mathrm{f}_{c} \rightarrow$ D: Eur. Phys.I. C75 (2015) 19

ALI-PUB-496395
Meson-to-meson yield ratio:
$>\mathrm{D}_{\mathrm{s}}^{+} /\left(\mathrm{D}^{0}+\mathrm{D}^{+}\right)$yield ratios are also independent of meson p_{T}
> Consistency between center-of-mass energies
$\Rightarrow f_{\mathrm{s}} /\left(f_{\mathrm{u}}+f_{\mathrm{d}}\right)$ ratio for non-prompt is found to be the same as beauty in $\mathrm{e}^{+} \mathrm{e}^{-}$results

Charm baryon-to-meson yield ratio

LEP average: $(0.113 \pm 0.013 \pm 0.006)$

PYTHIA 8
J.P. Christiansen, P. Z. Skands: JHEP 1508 (2015) 003
> Models based on fragmentation functions from $\mathbf{e}^{+} \mathbf{e}^{-}$collisions underestimate the data (PYTHIA 8 Monash)

- Models including color reconnection beyond leading color describe the data (PYTHIA 8 CR Mode 2)

Allowing "junction" topologies in multiparton interactions, which enhance the charm baryon production.

Significant baryon enhancement w.r.t models tuned on $e^{+} e^{-}$collisions

Charm baryon-to-meson yield ratio

Thermalised system of gluons, light quarks and antiquarks (QGP). Hadronisation via coalescence and fragmentation.

Charm baryon-to-meson yield ratio

Statistical Hadronisation Model
Replaces complexity of hadronisation by thermo-statistical weights, governed by the masses of hadrons at a universal hadronisation "temperature".

Feed-down from an augmented set of excited charm baryons necessary to describe $\frac{\Lambda_{c}^{+}}{D^{0}}$

- PDG states: $5 \Lambda_{\mathrm{c}}, 3 \Sigma_{\mathrm{c}}, 8 \Xi_{\mathrm{c}}, 2 \Omega_{\mathrm{c}}$
- RQM states: additional $18 \Lambda_{\mathrm{c}}, 42 \Sigma_{\mathrm{c}}, 62 \Xi_{\mathrm{c}}, 34 \Omega_{\mathrm{c}}$

Charm baryon-to-meson yield ratio

Quark (re)combination mechanism by thermal weights.

Charm is combined with co-moving light antiquark or two quarks. Abundances of charm baryon species are determined

Strange charm baryon production

Charm-strange sector not yet fully understood.

Baryon-to-meson yield ratio

In the charm-strange sector the enhancement is even larger

> PYTHIA with Monash tune and CR-BLC, QCM, and the SHM + RQM underestimate $\Xi_{c}^{0,+} / \mathrm{D}^{0}$ yield ratio
> Catania describes the $\Xi_{\mathrm{c}}^{0,+} / \mathrm{D}^{0}$ shape down to $p_{T} \approx 2 \mathrm{GeV} / \mathrm{C}$
> Catania describes the $\Omega_{\mathrm{c}}^{0} / \mathrm{D}^{0}$ yield ratio best, when including higher mass resonance decays (${ }^{*}$)

Modification of p_{T} spectra from pp to $\mathrm{p}-\mathrm{Pb}$? c $\Lambda_{c}^{+}, \boldsymbol{z}_{c}^{0}$

$>$ For $p_{T}>3 \mathrm{GeV} / \mathrm{c} \Lambda_{\mathrm{c}}^{+} / \mathrm{D}^{0}$ larger in $\mathrm{p}-$ Pb collisions than in pp collisions, for $p_{T}<2 \mathrm{GeV} / \mathrm{c}$ tendency for lower ratio
$>$ Confirmed by 3.7σ higher $\left\langle p_{\mathrm{T}}\right\rangle$ of Λ_{c}^{+}
> QCM underpredicts the $\Xi_{\mathrm{c}}^{0} / \mathrm{D}^{0}$ yield ratio, although it can describe the $\Lambda_{\mathrm{c}}^{+} / \mathrm{D}^{0}$ yield ratio, as it was seen also in pp collisions
arXiv:2211.14032

$\left\langle p_{\mathrm{T}}\right\rangle(\mathrm{GeV} / c)$		
	pp	$\mathrm{p}-\mathrm{Pb}$
D^{0}	2.06 ± 0.03 (stat.) ± 0.03 (syst.)	2.07 ± 0.02 (stat.) ± 0.04 (syst.)
Λ_{c}^{+}	1.86 ± 0.06 (stat.) ± 0.03 (syst.)	2.29 ± 0.06 (stat.) ± 0.06 (syst.)

Hardening of p_{T} spectra w.r.t pp is predicted in the presence of a medium (QCM) for Λ_{c}^{+}and Ξ_{c}^{0}
p_{T}-integrated Λ_{c}^{+} / D^{0} :
> No significant variation of p_{T}-integrated $\Lambda_{\mathrm{c}}^{+} / \mathrm{D}^{0}$ as a function of multiplicity or collision system within the uncertainties

Hypothesis:

- Difference between collision systems is due to momentum redistribution, no modification of the overall yield.

Models including coalescence describe the data, as well as the SHM when including additional charm baryon states.

Beauty baryon-to-meson yield ratio

c, b
Λ_{c}^{+} / D^{0}

FONLL calculations for beauty quark production (FONLL: JHEP 05 (1998) 007)
$f\left(\mathrm{~b} \rightarrow \Lambda_{\mathrm{b}}^{0}\right)$, LHCb (PRD 100 (2019) no.3, 031102)
Non-prompt Λ_{c}^{+}and D^{0} are well
BR $\left(\mathrm{H}_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}}^{+}+\mathrm{X}\right)$, PYTHIA 8 (arXiv:1410.3012) described by model calculations within the uncertainties

Nuclear modification factor

Nuclear modification factor
$>R_{\mathrm{pPb}}=1$: No modification in $\mathrm{p}-\mathrm{Pb}$ with respect to pp collisions
> Disentangle cold nuclear matter effects from final state effects
$>R_{\mathrm{pPb}}$ of Λ_{c}^{+}and Ξ_{c}^{0} are in agreement within the uncertainties
$>R_{\mathrm{pPb}}$ of $\Lambda_{\mathrm{c}}^{+}<1$ at low p_{T} and >1 at intermediate p_{T}, as also observed in the strange sector (CMS: Phys. Rev. C 101, 064906)
$>$ QCM prediction agrees with Ξ_{c}^{0} measurement

Non-prompt R_{pPb}

Nuclear modification factor

$>$ Non-prompt $\mathrm{D}^{0} R_{\mathrm{ppb}}$ is in agreement with measurement of B^{+}from CMS
$p_{\text {T }}$-integrated non-prompt $\mathrm{D}^{0} R_{\mathrm{pPb}}$ is in agreement with measurement of B^{+}, and non-prompt J/ ψ from LHCb

Non-prompt R_{pPb}

Nuclear modification factor

$>$ Non-prompt $\mathrm{D}^{0} R_{\mathrm{ppb}}$ is in agreement with measurement of B^{+}from CMS
$>p_{\mathrm{T}}$-integrated non-prompt $\mathrm{D}^{0} R_{\mathrm{pPb}}$ is in agreement with measurement of B^{+}, and non-prompt J/ ψ from LHCb
> Study shadowing for beauty and for charm

Total charm cross section

Results are on the upper edge of FONLL and NNLO calculations

Measured at midrapidity as a sum of ground state charm hadron cross sections
pp and $\mathrm{p}-\mathrm{Pb}$ results are compatible
> Significant baryon enhancement in pp and $\mathrm{p}-\mathrm{Pb}$ w.r.t. $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{e}^{-} \mathrm{p}$ collisions

Measured at midrapidity as a sum of ground state charm hadron cross sections

> New measurement of $c \bar{c}$ and $b \bar{b}$ cross section at forward rapidity via dilepton spectra at $m_{\mu \mu}>4 \frac{\mathrm{GeV}}{c^{2}}$
> Update of $\mathrm{c}, \mathrm{c} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$will be released soon, with an updated BR

Results are on the upper edge of FONLL and NNLO calculations

Summary

Heavy flavour hadrons

> Modified hadronisation mechanisms could be needed w.r.t. the vacuum string fragmentation picture to describe the heavy-flavour baryon measurements
> Or additional charm baryon states should be considered

JHEP 12 (2022) 126

ALICE

Non-prompt D mesons to investigate beauty-quark interaction in the QGP

Additional information on charm hadronisation by studying Λ_{c}^{+}-h correlation measurements in comparison to D-h correlations.

Outlook

LHC Run 3, 4 and beyond

> Higher data taking rate and upgraded TPC and ITS
D Direct reconstruction of beauty mesons and baryons
> Measurement of charm and beauty cross section and fragmentation fractions from pp to $\mathrm{Pb}-\mathrm{Pb}$
> Reconstruction of complex decays like Ξ_{cc}^{++}
> Better constraints to theoretical models of the strongly interacting medium and hadronisation

Lol ALICE 3: arXiv:2211.02491

Backup

22

Doubly strange charmed baryon production

$\operatorname{BR}\left(\Omega_{\mathbf{c}}^{\mathbf{0}} \rightarrow \Omega^{-} \boldsymbol{\pi}^{+}\right) \times \Omega_{\mathbf{c}}^{\mathbf{0}} / \mathrm{D}^{\mathbf{0}}$
${ }^{*} \mathrm{BR}\left(\Omega_{\mathrm{c}}^{0} \rightarrow \Omega^{-} \pi^{+}\right)=(0.51 \pm 0.07) \%$ is not measured \rightarrow use
calculation for scaling Y. Hsiao et al. EPJC 80, 1066 (2020)

Ratio	ALICE (pp 13 TeV)	Belle $\left(\mathrm{e}^{+} \mathrm{e}^{-} 10.52 \mathrm{GeV}\right)$
	$2<p_{\mathrm{T}}<12 \mathrm{GeV} / c$	visible
$\operatorname{BR}\left(\Omega_{\mathrm{c}}^{0} \rightarrow \Omega^{-} \pi^{+}\right) \times \sigma\left(\Omega_{\mathrm{c}}^{0}\right) / \sigma\left(\Lambda_{\mathrm{c}}^{+}\right)$	$(1.96 \pm 0.42 \pm 0.13) \times 10^{-3}$	$(2.24 \pm 0.29 \pm 0.16) \times 10^{-4}$
$\operatorname{BR}\left(\Omega_{\mathrm{c}}^{0} \rightarrow \Omega^{-} \pi^{+}\right) \times \sigma\left(\Omega_{\mathrm{c}}^{0}\right) / \sigma\left(\Xi_{\mathrm{c}}^{0}\right)$	$(3.99 \pm 0.96 \pm 0.96) \times 10^{-3}$	$(8.58 \pm 1.15 \pm 1.98) \times 10^{-4}$

Belle: PRD 97, 072005 (2018)
fragmentation fraction $\sim 7 \%$

Catania comes closest to data and describes baryon-to-meson yield ratio when including higher mass resonance decays

Sizable Ω_{c}^{0} contribution to charm production at LHC energies?

Charm baryon-to-meson yield ratio
c Λ_{c}^{+} / D^{0}

$>\Lambda_{\mathrm{C}}^{+} / \mathrm{D}^{0}$ as a function of p_{T} for different multiplicities
$\mathrm{pp}, \sqrt{s}=13 \mathrm{TeV}$ $|y|<0.5$
$N_{\text {trkl }}$ multiplicity classes
$\left\langle\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle$:

- 3.1
$\triangle 10.5$
- -22.6
$\longrightarrow 37.8$
PYTHIA 8.243
—— Monash
CR-BLC Mode 2

Charm baryon-to-meson yield ratio

Total charm and beauty cross section

Results are on the upper edge of FONLL and NNLO calculations

Nuclear modification factor

$>$ Total charm R_{pPb} is in agreement with unity
> Goal: Study modifications also in $\mathrm{Pb}-\mathrm{Pb}$ collisions

